Effect of tillage systems combined with plastic film mulches and fertilizers on soil physical properties in a wheat-agricultural site in southern Iraq

Authors

  • Ahmed Abed Gatea Al-Shammary Soil Science and Water Resources Departments, College of Agriculture University of Wasit
  • Nabil Raheem Lahmod Field crops department, College of Agriculture University of Wasit
  • Jesús Fernández-Gálvez Department of Regional Geographical Analysis and Physical Geography University of Granada
  • Andrés Caballero-Calvo Dpto. de Análisis Geográfico Regional y Geografía Física Universidad de Granada

DOI:

https://doi.org/10.18172/cig.5544

Keywords:

soil porosity, soil water content, soil aggregate stability, Conventional tillage, land management

Abstract

This study researches the influence of the three tillage systems (conventional, economical and mulch tillage) when combined with different soil plastic mulching and fertilizer applications on key selected soil physical properties (SPP) at 0-20 cm soil depth in a wheat agricultural site, during summer (from 1st June to 31st July 2015). SPP include soil porosity (Φ), volumetric soil water content 60 days after irrigation to field capacity (q60), and mean weight diameter of aggregates (MWD). The term mulch tillage refers here to a soil conservation practice where the soil surface is disturbed by tillage whereby crop residues are mixed with the soil and a certain amount of residues remain on the soil surface, while mulching refers to the placement of inorganic material over the top of a soil surface to protect it. Soil treatments included tillage system: conventional tillage using a combination of a mouldboard plough and a disc harrow (MP+DH), economical tillage using a rotary cultivator (RC), and mulch tillage using a chisel plough (MT+CP); soil plastic mulching: transparent mulching (TM), black mulching (BM) of 200 cm wide with 0.05 cm thick, and without mulching (WM); and fertilisers: composed organic fertiliser (CoF), no-composed organic fertiliser (NoF), and chemical fertiliser (ChF). The split–split-plot design under the randomized complete block design (RCBD) was established in 27 treatments with 3 replicated, to map Φ, q60, and MWD based on 81 soil samples from all treatments. Results showed that the different soil treatments have diverse impacts on SPP. MP+DH resulted in the higher q60 (0.22 cm3 cm-3), MWD (0.85 mm), and Φ (56.87%). Our findings showed that MT+CP obtained a higher MWD of 0.98 mm and lower Φ of 49% compared to other tillage systems. Soil mulching had significantly modified SPP, with BM resulting in the highest Φ (55.65%), q60 (0.35 cm3 cm-3), and MWD (1.06 mm). Results indicated no significant differences between fertiliser types on SPP. The CoF had a significant effect on MWD and related soil characteristics studied. These findings can help us to understand the individual and combined effects of the tillage system, mulching, and fertilization application on some soil characteristics in wheat agriculture. A further study with more focus on the influence of tillage depths and mulching types (plastic vs organic mulch for different crops) under a variety of soils and climatic conditions, as well as on soil thermal properties needs further investigation.

Downloads

Download data is not yet available.

References

Adekalu, K.O., Okunade, D.A., Osunbitan, J.A., 2006. Compaction and mulching effects on soil loss and runoff from two southwestern Nigeria agricultural soils. Geoderma 137(1), 226-230. https://doi.org/10.1016/j.geoderma.2006.08.012

Agarwal, A., Prakash, O., Sahay, D., Bala, M., 2022. Effect of organic and inorganic mulching on weed density and productivity of tomato (Solanum lycopersicum L.). Journal of Agriculture and Food Research 7, 100274. https://doi.org/10.1016/j.jafr.2022.100274

Al-Shammary, A., Al-Sadoon, J., 2014. Influence of tillage depth, soil mulching systems and fertilizers on some thermal properties of silty clay soil. GJAR 2, 18-32.

Al-Shammary, A., Kouzani, A., Gyasi-Agyei, Y., Gates, W., Rodrigo-Comino, J., 2020. Effects of solarisation on soil thermal-physical properties under different soil treatments: A review. Geoderma 363, 114137. https://doi.org/10.1016/j.geoderma.2019.114137

Anikwe, M., Mbah, C., Ezeaku, P., Onyia, V., 2007. Tillage and plastic mulch effects on soil properties and growth and yield of cocoyam (Colocasia esculenta) on an ultisol in southeastern Nigeria. Soil and Tillage Research 93(2), 264-272. https://doi.org/10.1016/j.still.2006.04.007

Arvidsson, J., Etana, A., Rydberg, T., 2014. Crop yield in Swedish experiments with shallow tillage and no-tillage 1983–2012. European Journal of Agronomy 52, 307-315. https://doi.org/10.1016/j.eja.2013.08.002

Besalatpour, A.A., Ayoubi, S., Hajabbasi, M.A., Mosaddeghi, M.R., Schulin, R., 2013. Estimating wet soil aggregate stability from easily available properties in a highly mountainous watershed. Catena 111, 72-79. https://doi.org/10.1016/j.catena.2013.07.001

Bhardwaj, R.L., Sarolia, D., 2013. Effect of mulching on crop production under rainfed condition-A review. Agricultural Reviews 34(3), 188-197. htpps://doi.org/10.5958/j.0976-0741.34.3.003

Braunack, M., Johnston, D., Price, J., Gauthier, E., 2015. Soil temperature and soil water potential under thin oxodegradable plastic film impact on cotton crop establishment and yield. Field Crops Research 184, 91-103. https://doi.org/10.1016/j.fcr.2015.09.009

Bu, L.-D., Liu, J.-l., Zhu, L., Luo, S.-s., Chen, X.-p., Li, S.-q., Hill, R.L., Zhao, Y., 2013. The effects of mulching on maize growth, yield and water use in a semi-arid region. Agricultural Water Management 123, 71-78. https://doi.org/10.1016/j.agwat.2013.03.015

Chen, J., Pang, D.-w., Jin, M., Luo, Y.-l., Li, H.-y., Li, Y., Wang, Z.-l., 2020. Improved soil characteristics in the deeper plough layer can increase grain yield of winter wheat. Journal of Integrative Agriculture 19(5), 1215-1226. https://doi.org/10.1016/S2095-3119(19)62679-1

Crittenden, S., de Goede, R., 2016. Integrating soil physical and biological properties in contrasting tillage systems in organic and conventional farming. European Journal of Soil Biology 77, 26-33. https://doi.org/10.1016/j.ejsobi.2016.09.003

Deng, J., Deng, Y., Sun, Z., Wang, G., Cao, L., Yuan, H., Huang, D., Jia, H., 2022. Tillage and residue management affect growing-season soil respiration in paddy fields. Soil and Tillage Research 218, 105315. https://doi.org/10.1016/j.still.2022.105315

Figueiredo, P.G., Bicudo, S.J., Chen, S., Fernandes, A.M., Tanamati, F.Y., Djabou-Fondjo, A.S.M., 2017. Effects of tillage options on soil physical properties and cassava-dry-matter partitioning. Field Crops Research 204, 191-198. https://doi.org/10.1016/j.fcr.2016.11.012

Githongo, M.W., Kiboi, M.N., Ngetich, F.K., Musafiri, C.M., Muriuki, A., Fliessbach, A., 2021. The effect of minimum tillage and animal manure on maize yields and soil organic carbon in sub‐Saharan Africa: A meta‐analysis. Environmental Challenges 5, 100340. https://doi.org/10.1016/j.envc.2021.100340

Gorucu, S., Khalilian, A., Han, Y.J., Dodd, R.B., Smith, B.R., 2006. An algorithm to determine the optimum tillage depth from soil penetrometer data in coastal plain soils. Applied Engineering in Agriculture 22(5), 625-631. https://doi.org/10.13031/2013.21993

Jackson, M.L., 2005. Soil chemical analysis: Advanced course. UW-Madison Libraries parallel press.

Jiang, Q., Madramootoo, C.A., Qi, Z., 2022. Soil carbon and nitrous oxide dynamics in corn (Zea mays L.) production under different nitrogen, tillage and residue management practices. Field Crops Research 277, 108421. https://doi.org/10.1016/j.fcr.2021.108421

Jiang, X.J., Liu, W., Wang, E., Zhou, T., Xin, P., 2017. Residual plastic mulch fragments effects on soil physical properties and water flow behavior in the Minqin Oasis, northwestern China. Soil and Tillage Research 166, 100-107. https://doi.org/10.1016/j.still.2016.10.011

Kahlon, M.S., Lal, R., Ann-Varughese, M., 2013. Twenty two years of tillage and mulching impacts on soil physical characteristics and carbon sequestration in Central Ohio. Soil and Tillage Research 126, 151-158. https://doi.org/10.1016/j.still.2012.08.001

Li, P., Gong, Y., Komatsuzaki, M., 2019. Temporal dynamics of 137Cs distribution in soil and soil-to-crop transfer factor under different tillage systems after the Fukushima Daiichi Nuclear Power Plant accident in Japan. Science of The Total Environment 697, 134060. https://doi.org/10.1016/j.scitotenv.2019.134060

Li, Y.-Y., Pang, H.-C., Han, X.-F., Yan, S.-W., Zhao, Y.-G., Jing, W., Zhen, Z., Zhang, J.-L., 2016. Buried straw layer and plastic mulching increase microflora diversity in salinized soil. Journal of Integrative Agriculture 15(7), 1602-1611. https://doi.org/10.1016/S2095-3119(15)61242-4

Li, Z., Zhang, Q., Qiao, Y., Du, K., Li, Z., Tian, C., Zhu, N., Leng, P., Yue, Z., Cheng, H., Li, F., 2022. Influence of straw mulch and no-tillage on soil respiration, its components and economic benefit in a Chinese wheat–maize cropping system. Global Ecology and Conservation 34, e02013. https://doi.org/10.1016/j.gecco.2022.e02013

Liebhard, G., Klik, A., Neugschwandtner, R.W., Nolz, R., 2022. Effects of tillage systems on soil water distribution, crop development, and evaporation and transpiration rates of soybean. Agricultural Water Management 269, 107719. https://doi.org/10.1016/j.agwat.2022.107719

Ma, R., Cai, C., Wang, J.-Y., Feng, J., Wu, X., Zhu, H., 2014. Effect of antecedent soil moisture on aggregate stability and splash erosion of krasnozem. Nongye Gongcheng Xuebao. Transactions of the Chinese Society of Agricultural Engineering 30, 95-103.

Mahadeen, A.Y., 2014. Effect of polyethylene black plastic mulch on growth and yield of two summer vegetable crops under rain-fed conditions under semi-arid region conditions. American Journal of Agricultural and Biological Sciences 9(2), 202. https://doi.org/10.3844/ajabssp.2014.202.207

Mamkagh, A.M.-A., 2009. Effect of tillage time and plastic mulch on growth and yield of okra (Abelmoschus esculentus) grown under rainfed conditions. International J. Agric. Biol. 11, 453-457.

Maul, J.E., Buyer, J.S., Lehman, R.M., Culman, S., Blackwood, C.B., Roberts, D.P., Zasada, I.A., Teasdale, J.R., 2014. Microbial community structure and abundance in the rhizosphere and bulk soil of a tomato cropping system that includes cover crops. Applied Soil Ecology 77, 42-50. https://doi.org/10.1016/j.apsoil.2014.01.002

Mirzaei, M., Gorji Anari, M., Taghizadeh-Toosi, A., Zaman, M., Saronjic, N., Mohammed, S., Saronjic, N., Mohammed, S., Szabo, S., Caballero-Calvo, A., 2022. Soil nitrous oxide emissions following crop residues management in corn-wheat rotation under conventional and no-tillage systems. Air, Soil and Water Research 15, https://doi.org/10.1177/11786221221128789

Mirzaei, M., Gorji Anari, M., Saronjic, N., Sarkar, S., Kral, I., Gronauer, A., Mohammed, S., Caballero-Calvo, A., 2023. Environmental impacts of corn silage production: influence of wheat residues under contrasting tillage management types. Environmental Monitoring and Assessment 195(1), 171. https://doi.org/10.1007/s10661-022-10675-8

Mondal, S., Chakraborty, D., 2022. Global meta-analysis suggests that no-tillage favourably changes soil structure and porosity. Geoderma 405, 115443. https://doi.org/10.1016/j.geoderma.2021.115443

Naveen, G., Humphreys, E., Eberbach, P.L., Balwinder, S., Sudhir, Y., Kukal, S.S., 2021. Effects of tillage and mulch on soil evaporation in a dry seeded rice-wheat cropping system. Soil and Tillage Research 209, 104976. https://doi.org/10.1016/j.still.2021.104976

Ndzelu, B.S., Dou, S., Zhang, X., Zhang, Y., Ma, R., Liu, X., 2021. Tillage effects on humus composition and humic acid structural characteristics in soil aggregate-size fractions. Soil and Tillage Research 213, 105090. https://doi.org/10.1016/j.still.2021.105090

Nzeyimana, I., Hartemink, A.E., Ritsema, C., Stroosnijder, L., Lwanga, E.H., Geissen, V., 2017. Mulching as a strategy to improve soil properties and reduce soil erodibility in coffee farming systems of Rwanda. Catena 149, 43-51. https://doi.org/10.1016/j.catena.2016.08.034

Parlak, M., Everest, T., Tunçay, T., Caballero‐Calvo, A., Rodrigo‐Comino, J., 2022. Soil losses due to leek and groundnut root crop harvesting: An unstudied regional problem in Turkey. Land Degradation & Development 33(11), 1799-1809. https://doi.org/10.1002/ldr.4262

Qader, S.H., Utazi, C.E., Priyatikanto, R., Najmaddin, P., Hama-Ali, E.O., Khwarahm, N.R., Tatem, A.J., Dash, J., 2023. Exploring the use of Sentinel-2 datasets and environmental variables to model wheat crop yield in smallholder arid and semi-arid farming systems. Science of The Total Environment 869, 161716. https://doi.org/10.1016/j.scitotenv.2023.161716

Rhoades, J.D., 1983. Soluble Salts. In A.L. Page (Ed.). Methods of Soil Analysis, Part 2., pp. 167-179. American Society of Agronomy https://doi.org/10.2134/agronmonogr9.2.2ed.c10

Rodrigo-Comino, J., 2018. Five decades of soil erosion research in “terroir”. The State-of-the-Art. Earth-Science Reviews, 179, 436-447. https://doi.org/10.1016/j.earscirev.2018.02.014

Rodrigo-Comino, J., Senciales, J. M., Cerdà, A., Brevik, E. C., 2018. The multidisciplinary origin of soil geography: A review. Earth-Science Reviews, 177, 114-123. https://doi.org/10.1016/j.earscirev.2017.11.008

Rodrigo-Comino, J., López-Vicente, M., Kumar, V., Rodríguez-Seijo, A., Valkó, O., Rojas, C., Pourghasemi, H.R., Salvati, L., Bakr, N., Vaudour, E., Brevik, E.C., Radziemska, M., Pulido, M., Di Prima, S., Dondini, M., de Vries, W., Santos, E.S., Mendonça-Santos, M.L., Yu, Y., Panagos, 2020. Soil science challenges in a new era: a transdisciplinary overview of relevant topics. Air, Soil and Water Research 13, 1178622120977491. https://doi.org/10.1177/1178622120977491

Rodrigo-Comino, J., Caballero-Calvo, A., Salvati, L., Senciales-González, J. M., 2022. Sostenibilidad de los cultivos subtropicales: Claves para el manejo del suelo, el uso agrícola y la Ordenación del Territorio. Cuadernos Geográficos 61(1), 150-167. https://doi.org/10.30827/cuadgeo.v61i1.22284

Ruehlmann, J., Körschens, M., 2020. Soil particle density as affected by soil texture and soil organic matter: 2. Predicting the effect of the mineral composition of particle-size fractions. Geoderma 375, 114543. https://doi.org/10.1016/j.geoderma.2020.114543

SAS, I., 2013. Base SAS 9.4 procedures guide: statistical procedures. Cary, NC, USA: SAS Institute Inc.

Scarascia-Mugnozza, G., Sica, C., Russo, G., 2012. Plastic materials in European agriculture: actual use and perspectives. Journal of Agricultural Engineering 42(3), 15-28. https://doi.org/10.4081/jae.2011.3.15

Silva, M.F.d., Fernandes, M.M.H., Fernandes, C., Silva, A.M.R.d., Ferraudo, A.S., Coelho, A.P., 2021. Contribution of tillage systems and crop succession to soil structuring. Soil and Tillage Research 209, 104924. https://doi.org/10.1016/j.still.2020.104924

Staff, S.S., 2014. Keys to soil taxonomy. United States Department of Agriculture: Washington, DC, USA.

Steinmetz, Z., Wollmann, C., Schaefer, M., Buchmann, C., David, J., Tröger, J., Muñoz, K., Frör, O., Schaumann, G.E., 2016. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Science of the Total Environment 550, 690-705. https://doi.org/10.1016/j.scitotenv.2016.01.153

Testa, R., Foderà, M., Di Trapani, A.M., Tudisca, S., Sgroi, F., 2015. Choice between alternative investments in agriculture: The role of organic farming to avoid the abandonment of rural areas. Ecological Engineering 83, 227-232. https://doi.org/10.1016/j.ecoleng.2015.06.021

Torppa, K.A., Taylor, A.R., 2022. Alternative combinations of tillage practices and crop rotations can foster earthworm density and bioturbation. Applied Soil Ecology 175, 104460. https://doi.org/10.1016/j.apsoil.2022.104460

Wang, J., Shi, X., Li, Z., Zhang, Y., Liu, Y., Peng, Y., 2021. Responses of runoff and soil erosion to planting pattern, row direction, and straw mulching on sloped farmland in the corn belt of northeast China. Agricultural Water Management 253, 106935. https://doi.org/10.1016/j.agwat.2021.106935

Wang, Y., Xie, Z., Malhi, S.S., Vera, C.L., Zhang, Y., Wang, J., 2009. Effects of rainfall harvesting and mulching technologies on water use efficiency and crop yield in the semi-arid Loess Plateau, China. Agricultural Water Management 96(3), 374-382. https://doi.org/10.1016/j.agwat.2008.09.012

Xin, X., Zhang, J., Zhu, A., Zhang, C., 2016. Effects of long-term (23 years) mineral fertilizer and compost application on physical properties of fluvo-aquic soil in the North China Plain. Soil and Tillage Research 156, 166-172. https://doi.org/10.1016/j.still.2015.10.012

Yang, H., Li, J., Wu, G., Huang, X., Fan, G., 2023. Maize straw mulching with no-tillage increases fertile spike and grain yield of dryland wheat by regulating root-soil interaction and nitrogen nutrition. Soil and Tillage Research 228, 105652. https://doi.org/10.1016/j.still.2023.105652

Ye, C., Guo, Z., Cai, C., Wang, J., Deng, J., 2017. Effect of water content, bulk density, and aggregate size on mechanical characteristics of Aquults soil blocks and aggregates from subtropical China. Journal of Soils and Sediments 17(1), 210-219. https://doi.org/10.1007/s11368-016-1480-8

Yin, W., Fan, Z., Hu, F., Fan, H., He, W., Zhao, C., Yu, A., Chai, Q., 2023. No-tillage with straw mulching promotes wheat production via regulating soil drying-wetting status and reducing soil-air temperature variation at arid regions. European Journal of Agronomy 145, 126778. https://doi.org/10.1016/j.eja.2023.126778

Zhang, T., Cai, G., Liu, S., Puppala, A.J., 2017. Investigation on thermal characteristics and prediction models of soils. International Journal of Heat and Mass Transfer 106, 1074-1086. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.084

Zhao, H., Xiong, Y.-C., Li, F.-M., Wang, R.-Y., Qiang, S.-C., Yao, T.-F., Mo, F., 2012. Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture-temperature improvement in a semi-arid agroecosystem. Agricultural Water Management 104, 68-78. https://doi.org/10.1016/j.agwat.2011.11.016

Zhao, J., Liu, Z., Lai, H., Yang, D., Li, X., 2022. Optimizing residue and tillage management practices to improve soil carbon sequestration in a wheat–peanut rotation system. Journal of Environmental Management 306, 114468. https://doi.org/10.1016/j.jenvman.2022.114468

Zhao, X.-d., Qin, X.-r., Li, T.-l., Cao, H.-b., Xie, Y.-h., 2023. Effects of planting patterns plastic film mulching on soil temperature, moisture, functional bacteria and yield of winter wheat in the Loess Plateau of China. Journal of Integrative Agriculture. https://doi.org/10.1016/j.jia.2023.02.026

Zheng, F., Wu, X., Zhang, M., Liu, X., Song, X., Lu, J., Wang, B., Jan van Groenigen, K., Li, S., 2022. Linking soil microbial community traits and organic carbon accumulation rate under long-term conservation tillage practices. Soil and Tillage Research 220, 105360. https://doi.org/10.1016/j.still.2022.105360

Zheng, K., Cheng, J., Xia, J., Liu, G., Xu, L., 2021. Effects of Soil Bulk Density and Moisture Content on the Physico-Mechanical Properties of Paddy Soil in Plough Layer. Water 13(16), 2290. https://doi.org/10.3390/w13162290

Downloads

Published

28-04-2023

How to Cite

1.
Gatea Al-Shammary AA, Lahmod NR, Fernández-Gálvez J, Caballero-Calvo A. Effect of tillage systems combined with plastic film mulches and fertilizers on soil physical properties in a wheat-agricultural site in southern Iraq. CIG [Internet]. 2023 Apr. 28 [cited 2024 Mar. 28];49(2):51-63. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/5544