The influence of climate variability on risk assessment of tropical cyclogenesis in the Gulf of Mexico

Authors

DOI:

https://doi.org/10.18172/cig.5847

Keywords:

Tropical Cyclogenesis, natural hazard , risk assessment, Madden-Julian Oscillation, El Niño-Southern Oscillation, Gulf of México

Abstract

Climate change and climate variability risk assessments are usually focus on tropical cyclones due to the potential hazard for human society, especially in urban coastal areas such as those along the Gulf of México. The frequency of this natural phenomenon depends on the confluence of different dynamic (wind divergence and relative vorticity) and thermodynamic (atmospheric water content and sea surface temperature) factors. Large scale atmospheric oscillations modulate these factors and influence tropical cyclone (TC) formation and development, producing important social and economic impacts. This work explores the Maden-Julian Oscillation (MJO) and El Niño-South ern Oscillation (ENSO) relationship in regard to the Gulf of México tropical cyclogenesis, using time series and synoptic case study analyses, in order to contribute to future risk assessments in these coastal zones. Results indicate MJO and ENSO frequencies are present in wind divergence and relative vorticity, atmospheric water vapor content, and sea surface temperature. Concurring cold phase ENSO and convective phase MJO conditions benefit TC formation, while warm phase ENSO conditions inhibit TC formation and affect the MJO cycle. Synoptic case study analyses show wind divergence and atmospheric water content anomalies dominate TC behavior.

Downloads

Download data is not yet available.

References

Aiyyer, A., Molinari, J., 2008. MJO and Tropical Cyclogenesis in the Gulf of Mexico and Eastern Pacific: Case Study and Idealized Numerical Modeling. American Meteorological Society 65, 2691-2703. https://doi.org/10.1175/2007JAS2348.1 DOI: https://doi.org/10.1175/2007JAS2348.1

Barret, B., Leslie, L., 2009. Links between Tropical Cyclone Activity and Madden–Julian Oscillation Phase in the North Atlantic and Northeast Pacific Basins. American Meteorological Society 137, 727-743. ,https://doi.org/10.1175/2008MWR2602.1 DOI: https://doi.org/10.1175/2008MWR2602.1

Bell, G.D., Chelliah M., 2006. Leading tropical modes associated with interannual and multi-decadal fluctuations in North Atlantic hurricane activity. J. Climate 19, 590-612. https://doi.org/10.1175/JCLI3659.1 DOI: https://doi.org/10.1175/JCLI3659.1

Capel, J., 1999. El Niño and the Earth's climate system. Nimbus 4, 157-161. http://hdl.handle.net/10835/1484

Chan, J.C.L., 1985. Tropical cyclone activity in the Northwest Pacific in relation to the El Nino/Southern Oscillation phenomenon. Monthly Weather Review 113, 599-606. https://doi.org/10.1175/1520-0493(1985)113<0599:TCAITN>2.0.CO;2 DOI: https://doi.org/10.1175/1520-0493(1985)113<0599:TCAITN>2.0.CO;2

Emanuel, K., 1986. An air–sea interaction theory for tropical cyclones. Journal of the Atmospheric Sciences 45, 585–604 https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2 DOI: https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2

Emanuel, K., 2005. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686-688. https://doi.org/10.1038/nature03906 DOI: https://doi.org/10.1038/nature03906

Emanuel, K., Sobel, A., 2013. Response of tropical sea surface temperature , precipitation , and tropical cyclone-related variables to changes in global and local forcing. Journal of Advances in Modeling Earth Systems 5(2), 447–458. https://doi.org/10.1002/jame.20032 DOI: https://doi.org/10.1002/jame.20032

Goldenberg, S.B., Shapiro, L.J., 1996. Physical mechanisms for the association of El Niño and West Africa rainfall with Atlantic major hurricanes. J. Climate 9, 1169–1187. https://doi.org/10.1175/1520-0442(1996)009<1169:PMFTAO>2.0.CO;2 DOI: https://doi.org/10.1175/1520-0442(1996)009<1169:PMFTAO>2.0.CO;2

Gray, W.M., Sheaffer, J.D., 1991. El Niño and QBO influences on tropical cyclone activity. In: M. H. Glantz, R. W. Katz, and N. Nicholls (Eds). Teleconnections Linking Worldwide Anomalies, Cambridge University Press, 257–284.

Gray, W.M., 1984. Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb Quasi-Biennial Oscillation influences. Monthly Weather Review 112, 1649–1668. https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2 DOI: https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2

Irwin, R., Davis, R., 1999. The relationship between the Southern Oscillation Index and tropical cyclone tracks in the eastern North Pacific. Geophysical Research Letters 26, 2251-2254. https://doi.org/10.1029/1999GL900533 DOI: https://doi.org/10.1029/1999GL900533

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, S., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., Joseph, D., 1996. The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society 77(3), 437-472. https://doi.org/10.1175/15200477(1996)077<0437: TNYRP>2.0.CO;2 DOI: https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

Kiladis, G.N., Straub, K.H., Haertel, P.T. 2005. Zonal and vertical structure of the Madden–Julian oscillation. Journal of the Atmospheric Sciences 62, 2790–2809. https://doi.org/10.1175/JAS3520.1 DOI: https://doi.org/10.1175/JAS3520.1

Knaff, J.A., 1997. Implications of summertime sea level pressure anomalies in the tropical Atlantic region. J. Climate 10, 789–804. https://doi.org/10.1175/1520-0442(1997)010<0789:IOSSLP>2.0.CO;2 DOI: https://doi.org/10.1175/1520-0442(1997)010<0789:IOSSLP>2.0.CO;2

Lafleur, D., Barret, B., Henderson, G., 2015. Some Climatological Aspects of the Madden–Julian Oscillation (MJO). J. Climate 28, 6039-6053. https://doi.org/10.1175/JCLI-D-14-00744.1 DOI: https://doi.org/10.1175/JCLI-D-14-00744.1

Lander, M., 1994. An exploratory analysis of the relationship between tropical storm formation in the Western North Pacific and ENSO. Monthly Weather Review 122, 636-651. https://doi.org/10.1175/1520-0493(1994)122<0636:AEAOTR>2.0.CO;2 DOI: https://doi.org/10.1175/1520-0493(1994)122<0636:AEAOTR>2.0.CO;2

Landsea, C.W., Pielke, R.A., Mestas, A.M., Knaff, J.A., 1999. Atlantic Basin hurricanes: Indices of climatic changes. Climatic Change 42, 89–129. https://doi.org/10.1023/A:1005416332322 DOI: https://doi.org/10.1023/A:1005416332322

Madden, R., Julian, P., 1971. Detection of 40-50 day oscillation in the zonal wind in the tropical Pacific. Journal of the Atmospheric Sciences 12, 702-708. https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2 DOI: https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2

Magaña, V., Pérez, J., Conde, C., 1997. The phenomenon of El Niño and the Southern Oscillation (ENSO) and its impacts in Mexico. Ciencias 51, 14-18.

Maloney, E. D., Hartmann, D. L., 2001. The Madden-Julian Oscillation , Barotropic Dynamics, and North Pacific Tropical Cyclone Formation. Part I : Observations. Journal of the Atmospheric Sciences 58(17), 2545-2558. https://doi.org/10.1175/1520-0469(2001)058%3C2545:TMJOBD%3E2.0.CO;2 DOI: https://doi.org/10.1175/1520-0469(2001)058<2545:TMJOBD>2.0.CO;2

Pan, Y., 1981. The effect of the thermal state of eastern equatorial Pacific on the frequency typhoons over western Pacific. Acta Meteorologica Sinica 40, 24-32. https://doi.org/10.11676/qxxb1982.003

Klotzbach, P.J., Gray, W.M., 2008. Multidecadal Variability in North Atlantic Tropical Cyclone Activity. Journal of Climate 21(15), 3929–3935. https://doi.org/10.1175/2008JCLI2162.1 DOI: https://doi.org/10.1175/2008JCLI2162.1

Rao, P.C.S., Nair, S.A., Khole, M., 2017. The Influence of Madden-Julian Oscillation on the Bay of Bengal Tropical Cyclogenesis During the Year 2013. In: M. Mohapatra, B.K. Bandyopadhyay, L.S. Rathore (Eds.). Tropical Cyclone Activity over the North Indian Ocean. Springer, pp. 227-232, Cham. https://doi.org/10.1007/978-3-319-40576-6_15 DOI: https://doi.org/10.1007/978-3-319-40576-6_15

Reyes, S., Troncoso, R., 1993. The impact of the El Niño-Southern Oscillation phenomenon on the generation of tropical cyclones around Mexico. Ciencia y Mar 5, 3-21.

Wheeler, M., Helton, H., 2004. An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Monthly Weather Review 132 (8), 1917–1932. https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2 DOI: https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2

Whitney, L. D., Hobgood, J., 1997. The relationship between sea surface temperatures and maximum intensities of tropical cyclones in the eastern North Pacific Ocean. J. Climate 10, 2921–2930.https://doi.org/10.1175/1520-0442(1997)010%3C2921:TRBSST%3E2.0.CO;2 DOI: https://doi.org/10.1175/1520-0442(1997)010<2921:TRBSST>2.0.CO;2

Xu, S., Huang, F.J., 2015. Impacts of the two types of El Niño on Pacific tropical cyclone activity. Journal of Ocean University of China 14, 191-198. https://doi.org/10.1175/JCLI-D-17-0298.1 DOI: https://doi.org/10.1007/s11802-015-2421-7

Downloads

Published

25-06-2024

How to Cite

1.
Villate García E, Gutiérrez de Velasco Sanromán G, Entenza Tilman L, Tereshchenko I, Morales Hernández JC, García Concepción FO. The influence of climate variability on risk assessment of tropical cyclogenesis in the Gulf of Mexico. CIG [Internet]. 2024 Jun. 25 [cited 2025 Feb. 13];50(2):29-44. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/5847

Issue

Section

Articles