Changes in the Climate Comfort of the Coast of Spain (1940-2022)
DOI:
https://doi.org/10.18172/cig.5977Keywords:
climatic comfort, coastline, tourism, reanalysis, ranksAbstract
The Spanish coastal regions register specific climatic conditions due to the combination of mild temperatures with little variation throughout the year, high relative humidity and the influence of maritime storms. In summer, the climatic comfort conditions are excessively hot, especially on the Mediterranean coast of Spain. Understanding these conditions and analysing the temporal evolution of recent decades, as well as regional differences, is fundamental for future summer tourism planning in the coming decades. This study analyses the principal 37 coastal tourist hubs of Spain grouped into 10 large regions (the Atlantic, Cantabrian, Mediterranean coasts, and the two archipelagos of the Balearic and Canary Islands). Daily data drawn from the ERA-5 (Copernicus) atmospheric reanalysis from 1940 to 2022 have been used (mean air temperature, mean relative humidity, and mean wind speed), with which the Climate Comfort Index has been calculated (CCI) by González (1998). The results show a significant reduction of the CCI in all the coastal areas analyzed, being more relevant in winter (-0.10 decade). The decrease in the index implies a decrease in cold thresholds and an expansion of comfort throughout the study area, especially in the central Mediterranean and Cantabrian Sea. For its part, in summer, the most important decreases (-0.07 and -0.08 / decade) show an increase in the most important climatic discomfort on the Cantabrian Coast – Euskal Kostaldea and on the Costa Brava-El Garraf, with a significant intensification and expansion temporary thermal sensation of heat. In other coastal sectors, in recent years, the climatic thresholds of heat and extreme heat have been reached for the first time.
Downloads
References
Moreno, A., Amelung, B., 2009. Climate Change and Tourist Comfort on Europe's Beaches in Summer: A Reassessment. Coastal Management 37 (6), 550-568. https://doi.org/10.1080/08920750903054997 DOI: https://doi.org/10.1080/08920750903054997
Arabadzhyan, A., Figini, P., García Galindo, C., González Hernández, M.M., Lam-González, Y.E., León, C.J., 2020. Climate change impact chains across the environment and the economy in coastal and marine destinations. Universitat Politècnica de Catalunya. http://hdl.handle.net/10553/112687
Bafaluy, D., Amengual, A., Romero, R., 2014. Present and future climate resources for various types of tourism in the Bay of Palma, Spain. Reg Environ Change 14, 1995-2006. https://doi.org/10.1007/s10113-013-0450-6 DOI: https://doi.org/10.1007/s10113-013-0450-6
Batista Tamayo L.M., Matos Pupo F., 2004. La aptitud climática del destino turístico Jardines del Rey (Cuba). Los tipos de tiempo. In: C. Diego Liaño, J.C. García Codrón, D.F. Rasilla Alvarez, P. Fernández de Arróyabe Hernáez, C. Garmendia Pedraja (Ed). El clima entre el mar y la montaña. Asociación Española de Climatología, pp. 561-570, Santander.
Besancenot J.P., 1985. Climat et tourisme estival sur les côtes de la péninsule ibérique. Geogr Pyren Sud-Ouest 56(4), 427–451. DOI: https://doi.org/10.3406/rgpso.1985.3027
Besancenot J.P., 1989. Clima et turismes. Masson, París
Besancenot, J.P., 1991. Clima y Turismo; Masson, Barcelona.
Bröde, P., Krüger, E., Rossi, F., 2011. Assessment of urban outdoor thermal comfort by the Universal Thermal Climate Index UTCI. In: Proceedings of the 14th International Conference on Environmental Ergonomics, Nafplio, Greece. DOI: https://doi.org/10.1007/s00484-011-0452-3
Bujosa, A., Rosselló, J., 2013. Climate change and summer mass tourism: the case of Spanish domestic tourism. Climatic Change 117, 363–375. https://doi.org/10.1007/s10584-012-0554-x DOI: https://doi.org/10.1007/s10584-012-0554-x
Cetin, M., Sevik, H., 2016a. Measuring the Impact of Selected Plants on Indoor CO2 Concentrations. Polish Journal of Environmental Studies 25(3), 973-979. https://doi.org/10.15244/pjoes/61744 DOI: https://doi.org/10.15244/pjoes/61744
Cetin, M., Sevik, H., 2016b. Evaluating the recreation potential of Ilgaz mountain national park in Turkey. Environmental monitoring and assessment 188, 1-10. https://doi.org/10.1007/s10661-015-5064-7 DOI: https://doi.org/10.1007/s10661-015-5064-7
Crossland, D.R., 2006. Defining a forest reference condition for Kouchibouguac National Park and adjacent landscape in eastern New Brunswick using four reconstructive approaches (Doctoral dissertation). University of New Brunswick, Faculty of Forestry and Environmental Management.
De Freitas, C.R., 2003. Tourism climatology: evaluating environmental information for decision making and business planning in the recreation and tourism sector. Int. J. Biometeorol. 48, 45-54. https://doi.org/10.1007/s00484-003-0177-z DOI: https://doi.org/10.1007/s00484-003-0177-z
De Freitas C.R., Scott D, McBoyle G., 2008. A second generation climate index for tourism (CIT): specification and verification. Int. J. Biometeorol. 5, 399–407. https://doi.org/doi:10.1007/s00484-007-0134-3 DOI: https://doi.org/10.1007/s00484-007-0134-3
De Freitas, C.R. Grigorieva, E.A., 2017. A comparison and appraisal of a comprehensive range of human thermal climate indices. Int. J. Biometeorol. 61, 487–512. https://doi.org/10.1007/s00484-016-1228-6 DOI: https://doi.org/10.1007/s00484-016-1228-6
Flato, G.M., Boer, G.J., 2001. Warming asymmetry in climate change simulations. Geophysical Research Letters 28(1), 195-198. https://doi.org/10.1029/2000GL012121 DOI: https://doi.org/10.1029/2000GL012121
Gómez-Martín M.B., 2005. Weather, climate and tourism. A geographical perspective. Ann. Tour. Res. 32(3), 571–591. https://doi.org/doi:10.1016/j.annals.2004.08.004 DOI: https://doi.org/10.1016/j.annals.2004.08.004
Gómez-Martín, M.B., 2006. Climate potential and tourist demand in Catalonia (Spain) during the summer season. Climate Research 32(1), 75-87. https://doi.org/10.3354/cr032075 DOI: https://doi.org/10.3354/cr032075
Gómez Martín, M.B., 2017. Retos del turismo español ante el cambio climático. Investigaciones Geográficas 67, 31-47. https://doi.org/10.14198/INGEO2017.67.02 DOI: https://doi.org/10.14198/INGEO2017.67.02
González, O.C., 1998. Metodología Para el Cálculo del Confort Climático en Colombia. IDEAM-Instituto de Hidrología, Meteorología y Estudios Ambientales (Santa Fe de Bogotá, Colombia). Available online: http://documentacion.ideam.gov.co/openbiblio/bvirtual/007574/Metodologiaconfort.pdf
Hein, L., Metzger, M. J., Moreno, A., 2009. Potential impacts of climate change on tourism; a case study for Spain. Current Opinion in Environmental Sustainability 1(2), 170-178. https://doi.org/10.1016/j.cosust.2009.10.011 DOI: https://doi.org/10.1016/j.cosust.2009.10.011
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., Jean-Noël, Thépaut, J.N., 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146 (730), 1999-2049. https://doi.org/10.1002/qj.3803 DOI: https://doi.org/10.1002/qj.3803
Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM) (1998). Metodología para el Cálculo del Confort Climático en Colombia. Ministerio de Medio Ambiente y Desarrollo Sostenible. Available online: http://documentacion.ideam.gov.co/openbiblio/bvirtual/007574/Metodologiaconfort.pdf
Jacob, D., Kotova, L., Teichmann, C., Sobolowski, S. P., Vautard, R., Donnelly, C., Koutroulis, A.G., Grillakis, M.G., Tsanis, I.K., Damm, A., Sakalli, A., van Vliet. M.T.H., 2018. Climate impacts in Europe under +1.5ºC global warming. Earth's Future 6(2), 264-285. https://doi.org/10.1002/2017EF000710 DOI: https://doi.org/10.1002/2017EF000710
Kendall, M.G., 1975. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK.
Lin, C.H., Wang, W.C., 2023. Impacts of climate change knowledge on coastal tourists´ destination decision-making and revisit intentions. Journal of Hospitality and Tourism Management 56, 322-335. https://doi.org/10.1016/j.jhtm.2023.07.005 DOI: https://doi.org/10.1016/j.jhtm.2023.07.005
Mann, H.B., 1945. Nonparametric tests against trend. Econometrica 13, 245–259. https://doi.org/10.2307/1907187 DOI: https://doi.org/10.2307/1907187
March, H., Saurí, D. Llurdés, J.C., 2014. Perception of the effects of climate change in winter and summer tourist areas: the Pyrenees and the Catalan and Balearic coasts, Spain. Reg. Environ. Change 14, 1189–1201. https://doi.org/10.1007/s10113-013-0561-0 DOI: https://doi.org/10.1007/s10113-013-0561-0
Martínez Ibarra, E.M., 2011. The use of webcam images to determine tourist–climate aptitude: favourable weather types for sun and beach tourism on the Alicante coast (Spain). Int. J. Biometeorol. 55, 373-385. https://doi.org/10.1007/s00484-010-0347-8 DOI: https://doi.org/10.1007/s00484-010-0347-8
Martínez Ibarra, E.M., 2015. Climate, water and tourism: causes and effects of droughts associated with urban development and tourism in Benidorm (Spain). Int. J. Biometeorol. 59, 487–501. https://doi.org/10.1007/s00484-014-0851-3 DOI: https://doi.org/10.1007/s00484-014-0851-3
Mieczkowski, Z., 1985. The tourism climatic index: A method of evaluating world climates for tourism. Can. Geogr. 29, 220–233. http://doi.org/10.1111/j.1541-0064.1985.tb00365.x. DOI: https://doi.org/10.1111/j.1541-0064.1985.tb00365.x
Missenard, A., 1937. Warmth and Comfort. Journal of the Institution of Heating and Ventilating Engineers 4, 602-606.
Nikolopoulou, M., 2004. Designing Open Spaces in the Urban Environment: A Bioclimatic Approach. Centre for Renewable Energy Sources, EESD, FP5: Bath, UK.
Nikolopoulou, M., Steemers, K., 2003. Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy and Buildings 35, 95-101. https://doi.org/10.1016/S0378-7788(02)00084-1 DOI: https://doi.org/10.1016/S0378-7788(02)00084-1
Nilsson, J.H., Gössling, S., 2013. Tourist responses to extreme environmental events: The case of Baltic Sea algal blooms. Tourism Planning & Development 10(1), 32-44. https://doi.org/10.1080/21568316.2012.723037 DOI: https://doi.org/10.1080/21568316.2012.723037
Olcina Cantos, J., Serrano-Notivoli, R., Miró, J., Meseguer-Ruiz, O., 2019. Tropical nights on the Spanish Mediterranean coast, 1950−2014. Clim. Res. 78, 225-236. https://doi.org/10.3354/cr01569 DOI: https://doi.org/10.3354/cr01569
Quayle, R.G., Steadman, R.G., 1998. The Steadman wind chill: An improvement over present scale. Weather. Forecast 13, 1187–1193. https://doi.org/10.1175/1520-0434(1998)013<1187:TSWCAI>2.0.CO;2 DOI: https://doi.org/10.1175/1520-0434(1998)013<1187:TSWCAI>2.0.CO;2
Perry, A., 2005. The Mediterranean: how can the world’s most popular and successful tourist destination adapt to a changing climate? In: C. M. Hall, J. Higham (Ed.). Tourism, recreation and climate change, pp. 86-96, Channel View Publications. DOI: https://doi.org/10.21832/9781845410056-007
Raybould, M., Anning, D., Ware, D., Lazarow, N., 2013. Beach and surf tourism and recreation in Australia: Vulnerability and adaptation. Robina, QLD, Australia: Bond University.
Sen, P.K., 1968. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 63, 1379–1389. DOI: https://doi.org/10.1080/01621459.1968.10480934
Steadman, R.G., 1984. A universal scale of apparent temperature. J. Appl. Meteorol. Climatol. 23, 1674–1687. https://doi.org/10.1175/1520-0450(1984)023<1674:AUSOAT>2.0.CO;2 DOI: https://doi.org/10.1175/1520-0450(1984)023<1674:AUSOAT>2.0.CO;2
Tanana, A.B., Ramos, M.B., Gil, V., Campo, A.M., 2021. Confort climático y turismo. Estudio aplicado a diferentes niveles de resolución temporal en Puerto Iguazú, Argentina. Estudios Geográficos 82, e064. https://doi.org/10.3989/estgeogr.202076.076 DOI: https://doi.org/10.3989/estgeogr.202076.076
Theil, H., 1950. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. Indag. Math. 12, 173.
Thom, E.C., 1959. The discomfort index. Weatherwise 12, 57–61. https://doi.org/10.1080/00431672.1959.9926960. DOI: https://doi.org/10.1080/00431672.1959.9926960
Yong, E.L., 2021. Understanding the economic impacts of sea level rise on tourism prosperity: Conceptualization and panel data evidence. Advances in Climate Change Research 12(2), 240-253. https://doi.org/10.1016/j.accre.2021.03.009 DOI: https://doi.org/10.1016/j.accre.2021.03.009
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 David Espín Sánchez, Jorge Olcina Cantos
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain copyright of articles and authorize Cuadernos de Investigación Geográfica / Geographical Research Letters the first publication. They are free to share and redistribute the article without obtaining permission from the publisher as long as they give appropriate credit to the editor and the journal.
Self-archiving is allowed too. In fact, it is recommendable to deposit a PDF version of the paper in academic and/or institutional repositories.
It is recommended to include the DOI number.
This journal is licensed under a Creative Commons Attribution 4.0 International License