Fire Risk Assessment In The Wildland-Urban Interface Of Ibero-Atlantic Heterogeneous Landscapes
DOI:
https://doi.org/10.18172/cig.6848Keywords:
Burning embers, fire exposure, fire severity, Foyedo large forest fire, RBR spectral index, WUIAbstract
Forest fires cause major environmental and socio-economic impacts, with the greatest risk for people occurring in the wildland-urban interface (WUI). In Ibero-Atlantic landscapes, where dispersed settlements are expanding into wildlands and vegetation is encroaching on populated areas, both the frequency and severity of WUI fires are rising sharply. The objective of this study was to develop a new methodological approach to assess fire risk in the WUI of Ibero-Atlantic heterogeneous landscapes under the assumption that fire impacts on population entities may occur by direct or indirect exposure to different types of vegetation. Based on landscape configuration analysis, expert knowledge of fire behaviour across vegetation types and on-site observations of fire impact on buildings and other infrastructures, we developed a multi-ring system around different types of population entities to characterize pre-fire vegetation patterns and fire severity across zones of influence (rings) within the WUI. The relationships between vegetation and severity (estimated with the Relativized Burn Ratio –RBR– spectral index derived from Sentinel-2 satellite imagery) were evaluated using multivariate linear regression models, with a backward stepwise procedure, at two levels: WUI and ring. This framework was tested in the large forest fire of Foyedo (Asturias, NW Spain) that affected more than 10,000 ha in the spring of 2023. Vegetation changed across the WUI, reflecting a land-use gradient from more managed vegetation near settlements to less managed and more natural types in outer zones, with fire severity increasing outward. The main drivers of fire severity at WUI level were vegetation type and vertical complexity. At ring level, the pattern was similar, with the percentage of heathlands and shrublands being the best predictor of fire severity in all rings. In the outermost ring, pine and eucalyptus plantations were also directly related to fire severity. Our findings underscore the need to develop spatially complex analytical frameworks accounting for different exposures across the WUI in order to guide effective vegetation management for forest fire prevention in the Atlantic landscapes of the Iberian Peninsula.
Downloads
References
Alvarez, A., Lecina-Diaz, J., Batllori, E., Duane, A., Brotons, L., Retana, J. 2024. Spatiotemporal patterns and drivers of extreme fire severity in Spain for the period 1985-2018. Agricultural and Forest Meteorology 358, 110185. https://doi.org/10.1016/j.agrformet.2024.110185
Bar-Massada, A., Alcasena, F., Schug, F., Radeloff, V.C. 2023. The wildland–urban interface in Europe: spatial patterns and associations with socioeconomic and demographic variables. Landscape and Urban Planning 235, 104759. https://doi.org/10.1016/j.landurbplan.2023.104759
Barbosa, B., Oliveira, S., Caetano, M., Rocha, J. 2024. Mapping the wildland-urban interface at municipal level for wildfire exposure analysis in mainland Portugal. Journal of Environmental Management 368, 122098. https://doi.org/10.1016/j.jenvman.2024.122098
Baret, F., Weiss, M., Lacaze, R., Camacho, F., Makhmara, H., Pacholcyzk, P., Smets, B. 2013. GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production. Remote Sensing of Environment 137, 299-309. https://doi.org/10.1016/j.rse.2012.12.027
Beltrán-Marcos, D., Calvo, L., Fernández-Guisuraga, J.M., Fernández-García, V., Suárez-Seoane, S. 2023. Wildland-urban interface typologies prone to high severity fires in Spain. Science of the Total Environment 894, 165000. https://doi.org/10.1016/j.scitotenv.2023.165000
Beltrán-Marcos, D., Suárez-Seoane, S., Fernández-Guisuraga, J.M., Azevedo, J.C., Calvo, L. 2024. Fire regime attributes shape pre-fire vegetation characteristics controlling extreme fire behavior under different bioregions in Spain. Fire Ecology 20, 47. https://doi.org/10.1186/s42408-024-00276-w
Bento-Gonçalves, A., Vieira, A. 2020. Wildfires in the wildland-urban interface: Key concepts and evaluation methodologies. Science of the Total Environment 707, 135592. https://doi.org/10.1016/j.scitotenv.2019.135592
Blanco-Fontao, B., Quevedo, M., Obeso, J.R. 2011. Abandonment of traditional uses in mountain areas: typological thinking versus hard data in the Cantabrian Mountains (NW Spain). Biodiversity and Conservation 20, 1133-1140. https://doi.org/10.1007/s10531-011-0016-1
Calheiros, T., Pereira, M.G., Nunes, J.P. 2021. Assessing impacts of future climate change on extreme fire weather and pyro-regions in Iberian Peninsula. Science of the Total Environment 754, 142233. https://doi.org/10.1016/j.scitotenv.2020.142233
Calkin, D.E., Cohen, J.D., Finney, M.A., Thompson, M.P. 2014. How risk management can prevent future wildfire disasters in the wildland-urban interface. Proceedings of the National Academy of Sciences USA 111, 746-751. https://doi.org/10.1073/pnas.1315088111
Calviño-Cancela, M., Chas-Amil, M.L., García-Martínez, E.D., Touza, J. 2016. Wildfire risk associated with different vegetation types within and outside wildland-urban interfaces. Forest Ecology and Management 372, 1-9. https://doi.org/10.1016/j.foreco.2016.04.002
Carlson, A.R., Helmers, D.P., Hawbaker, T.J., Mockrin, M.H., Radeloff, V.C. 2022. The wildland–urban interface in the United States based on 125 million building locations. Ecological Applications 32(5), e2597. https://doi.org/10.1002/eap.2597
Castañeda, N.P., Reyes, J.B. 2014. Climate change and 5th generation fires. In: J.C. Santamarta, L.E., Hernández-Gutiérrez, Arraiza, M.P. (Eds.), Natural Hazards and Climate Change, Colegio de Ingenieros de Montes, pp. 81-89. Available at: https://dialnet.unirioja.es/descarga/libro/568739.pdf (last access: 27/11/2025).
Caton, S.E., Hakes, R.S., Gorham, D.J., Zhou, A., Gollner, M.J. 2017. Review of pathways for building fire spread in the wildland urban interface part I: exposure conditions. Fire Technology 53, 429-473. https://doi.org/10.1007/s10694-016-0589-z
Chas-Amil, M.L., Touza, J., García-Martínez, E. 2013. Forest fires in the wildland–urban interface: a spatial analysis of forest fragmentation and human impacts. Applied Geography 43, 127-137. https://doi.org/10.1016/j.apgeog.2013.06.010
Chas-Amil, M.L., García-Martínez, E., Touza, J. 2020. Iberian Peninsula October 2017 wildfires: burned area and population exposure in Galicia (NW of Spain). International Journal of Disaster Risk Reduction 48, 101623. https://doi.org/10.1016/j.ijdrr.2020.101623
Corona, P., Ascoli, D., Barbati, A., Bovio, G., Colangelo, G., Elia, M., Garfì, V., Iovino, F., Lafortezza, R., Leone, V., Lovreglio, R., Marchetti, M., Marchi, E., Menguzzato, G., Nocentini, S., Picchio, R., Portoghesi, L., Puletti, N., Sanesi, G., Chianucci, F. 2015. Integrated forest management to prevent wildfires under Mediterranean environments. Annals of Silvicultural Research 39(1), 1-22. http://doi.org/10.12899/ASR-946
Cruz, Ó., Riveiro, S. F., García-Duro, J., Casal, M., Reyes, O. 2024. European Atlantic deciduous forests are more resilient to fires than Pinus and Eucalyptus plantations. Forest Ecology and Management 561, 121849. https://doi.org/10.1016/j.foreco.2024.121849
Dupuy, J.L., Fargeon, H., Martin-StPaul, N., Pimont, F., Ruffault, J., Guijarro, M., Hernando, C., Madrigal, J., Fernandes, P. 2020. Climate change impact on future wildfire danger and activity in southern Europe: a review. Annals of Forest Science 77, 1-24. https://doi.org/10.1007/s13595-020-00933-5
Elmqvist, T., Stoof, C.R., Valkó, O., Aakala, T., Arca, B., Arsava, K.S.,Ascoli, D., Bengtsson, J., Engelbrecht, J., Fra Paleo, U., Marinšek, A., Saražin, J. 2025. Changing wildfires: policy options for a fire-literate and fire-adapted Europe. EASAC policy report 48. Scientific monograph. Vienna: EASAC Secretariat. Available at: https://easac.eu/fileadmin/user_upload/EASAC_Wildfires_final_290525.pdf (last access: 31 May 2025).
Fernández-Alonso, J.M., Vega, J.A., Jiménez, E., Ruiz-González, A.D., Álvarez-González, J.G. 2017. Spatially modeling wildland fire severity in pine forests of Galicia, Spain. European Journal of Forest Research 136, 105-121. http://doi.org/10.1007/s10342-016-1012-5
Fernández-García, V., Santamarta, M., Fernández-Manso, A., Quintano, C., Marcos, E., Calvo, L. 2018. Burn severity metrics in fire-prone pine ecosystems along a climatic gradient using Landsat imagery. Remote Sensing of Environment 206, 205-217. https://doi.org/10.1016/j.rse.2017.12.029
Fernández-Guisuraga, J.M., Calvo, L. 2025. Fire severity shows limited dependence on fuel structure under adverse fire weather conditions: a case study of two extreme wildfire events. Fire Ecology 21, 1-19. https://doi.org/10.1186/s42408-025-00371-6
Fernández-Guisuraga, J.M., Fernandes, P.M. 2023. Using pre-fire high point cloud density LiDAR data to predict fire severity in central Portugal. Remote Sensing 15, 768. https://doi.org/10.3390/rs15030768
Fernández-Guisuraga, J. M., Calvo, L., Pérez-Rodríguez, L. A., Suárez-Seoane, S. 2024. Integrating Physical-Based Models and Structure-from-Motion Photogrammetry to Retrieve Fire Severity by Ecosystem Strata from Very High Resolution UAV Imagery. Fire 7(9), 304. https://doi.org/10.3390/fire7090304
Fernández-Manso, A., Quintano, C., Fernández-Guisuraga, J M., Roberts, D. 2024. Next-gen regional fire risk mapping: Integrating hyperspectral imagery and National Forest Inventory data to identify hot-spot wildland-urban interfaces. Science of the Total Environment 940, 173568. https://doi.org/10.1016/j.scitotenv.2024.173568
Fernandes, P.M., Guiomar, N., Rossa, C.G. 2019. Analysing eucalypt expansion in Portugal as a fire-regime modifier. Science of the Total Environment 666, 79-88. https://doi.org/10.1016/j.scitotenv.2019.02.237
Flannigan, M.D., Stocks, B.J., Wotton, B.M. 2000. Climate change and forest fires. The Science of the Total Environment 262, 221-229. https://doi.org/10.1016/S0048-9697(00)00524-6
Ganteaume, A., Camia, A., Jappiot, M., San-Miguel-Ayanz, J., Long-Fournel, M., Lampin, C. 2013. A review of the main driving factors of forest fire ignition over Europe. Environmental Management 51, 651-662. https://doi.org/10.1007/s00267-012-9961-z
García-Llamas, P., Suárez-Seoane, S., Taboada, A., Fernández-Manso, A., Quintano, C., Fernández-García, V., Fernández-Guisuraga, J.M., Marcos, E., Calvo, L. 2019. Environmental drivers of fire severity in extreme fire events that affect Mediterranean pine forest ecosystems. Forest Ecology and Management 433, 24-32. https://doi.org/10.1016/j.foreco.2018.10.051
García-Llamas, P., Suárez-Seoane, S., Fernández-Manso, A., Quintano, C., Calvo, L. 2020. Evaluation of fire severity in fire prone-ecosystems of Spain under two different environmental conditions. Journal of Environmental Management 271, 110706. https://doi.org/10.1016/j.jenvman.2020.110706
Gómez-Sal, A., Bonet, A., Saldaña-López, A., Muñoz-Rojas, J. 2024. Landscape ecology and landscape approaches in the Iberian context: challenges, opportunities, and future prospects. Landscape Ecology 39(8), 153. https://doi.org/10.1007/s10980-024-01938-5
González-García, V., Fernández-Pascual, E., Font, X., Jiménez-Alfaro, B. 2024. Forest habitat diversity in the Cantabrian Mixed Forests ecoregion (NW Iberian Peninsula), a climatic refugia in western Europe. Applied Vegetation Science 27(3), e12793. https://doi.org/10.1111/avsc.12793
Guo, Y., Wang, J., Ge, Y., Zhou, C. 2024. Global expansion of wildland-urban interface intensifies human exposure to wildfire risk in the 21st century. Science Advances 10(45), 9587. https://doi.org/10.1126/sciadv.ado9587
Hernández, L. 2018. Forest Fires Report 2018: The northwest powder keg. Iberian proposal by WWF Spain and ANP/WWF Portugal for fire prevention. WWF Spain.
Hernández, L. 2020. Forest Fires 2020 Report: The Planet in Flames. WWF's Iberian proposal for fire prevention. WWF Spain.
Jeffries, E., Perry, C. 2020. Fires, forests and the future: a crisis raging out of control? WWF and BCG. Available at: https://wwfint.awsassets.panda.org/downloads/wwf_forestfiresreport2020_final.pdf
Kaim, D., Helmers, D.P., Jakiel, M., Pavlačka, D., Radeloff, V.C. 2023. The wildland-urban interface in Poland reflects legacies of historical national borders. Landscape Ecology 38(9), 2399-2415. https://doi.org/10.1007/s10980-023-01722-x
Keeley, J.E. 2009. Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire 18, 116-126. https://doi.org/10.1071/WF07049
Key, C.H., Benson, N.C. 2006. Landscape Assessment (LA). FIREMON: Fire effects monitoring and inventory system 164, LA-1. Available at: https://research.fs.usda.gov/treesearch/24066
Lampin-Maillet, C., Long-Fournel, M., Ganteaume, A., Jappiot, M., Ferrier, J.P. 2011. Land cover analysis in wildland–urban interfaces according to wildfire risk: a case study in the south of France. Forest Ecology and Management 261, 2200-2213. https://doi.org/10.1016/j.foreco.2010.11.022
Lecina-Diaz, J., Martínez-Vilalta, J., Alvarez, A., Banqué, M., Birkmann, J., Feldmeyer, D., Vayreda, J., Retana, J. 2021. Characterizing forest vulnerability and risk to climate-change hazards. Frontiers in Ecology and the Environment 19(2), 126-133. https://doi.org/10.1002/fee.2278
Lecina-Diaz, J., Campos, J., Pais, S., Carvalho-Santos, C., Azevedo, J., Fernandes, P., Gonçalves, J.F., Aquilué, N., Roces-Díaz, J.V., Agrelo de la Torre, M., Brotons, L., Chas-Amil, M.L., Lomba, A., Duane, A., Moreira, F., Touza, J.M., Hermoso, V., Sil, Â., Vicente, J.R., Honrado, J., Regos, A. 2023. Stakeholder perceptions of wildfire management strategies as nature-based solutions in two Iberian biosphere reserves. Ecology and Society 28, 39. https://doi.org/10.5751/ES-13907-280139
López-Sánchez, C.A., Castedo-Dorado, F., Cámara-Obregón, A., Barrio-Anta, M. 2021. Distribution of Eucalyptus globulus Labill. in northern Spain: Contemporary cover, suitable habitat and potential expansion under climate change. Forest Ecology and Management 481(1), 118723. https://doi.org/10.1016/j.foreco.2020.118723
Mell, W.E., Manzello, S.L., Maranghides, A., Butry, D., Rehm, R.G. 2010. The wildland-urban interface fire problem - current approaches and research needs. International Journal of Wildland Fire 19(2), 238-251. https://doi.org/10.1071/WF07131
MITECO (2012). Mapa Forestal de Máxima Actualidad del Principado de Asturias 1:25.000. https://www.miteco.gob.es/es/cartografia-y-sig/ide/descargas/biodiversidad/mfe_asturias.html
Modugno, S., Balzter, H., Cole, B., Borrelli, P. 2016. Mapping regional patterns of large forest fires in Wildland–Urban Interface areas in Europe. Journal of Environmental Management 172, 112-126. https://doi.org/10.1016/j.jenvman.2016.02.013
Morán-Ordóñez, A., Bugter, R., Suárez-Seoane, S., de Luis, E., Calvo, L. 2013. Temporal changes in socio-ecological systems and their impact on ecosystem services at different governance scales: a case study of heathlands. Ecosystems 16, 765-782. https://doi.org/10.1007/s10021-013-9649-0
Moreira, F., Viedma, O., Arianoutsou, M., Curt, T., Koutsias, N., Rigolot, F., Barbati, A., Corona, P., Vaz, P., Xanthopoulos, G., Mouillot, F., Bilgili, E. 2011. Landscape-wildfire interactions in southern Europe: Implications for landscape management. Journal of Environmental Management 92, 2389-2402. https://doi.org/10.1016/j.jenvman.2011.06.028
Oliveira, A.S., Silva, J.S., Guiomar, N., Fernandes, P., Nereu, M., Gaspar, J., Lopes, R.F.R, Rodrigues, J.P.C. 2023. The effect of broadleaf forests in wildfire mitigation in the WUI–A simulation study. International Journal of Disaster Risk Reduction 93, 103788. https://doi.org/10.1016/j.ijdrr.2023.103788
Parks, S.A., Dillon, G.K., Miller, C. 2014. A new metric for quantifying burn severity: the relativized burn ratio. Remote Sensing 6, 1827-1844. https://doi.org/10.3390/rs6031827
Povak, N.A., Hessburg, P.F., Salter, R.B., Gray R.W., Prichard S.J. 2023. System level feedbacks of active fire regimes in large landscapes. Fire Ecology 19, 1-26. https://doi.org/10.1186/s42408-023-00197-0
Radeloff, V.C., Hammer, R.B, Stewart, S.I., Fried, J.F., Holcomb, S.S., Mckeefry, J.F. 2005. The wildland-urban interface in the United States. Ecological Applications 15(3), 799-805. https://doi.org/10.1890/04-1413
Regos, A., Pais, S., Campos, J. C., Lecina-Diaz, J. 2023. Nature-based solutions to wildfires in rural landscapes of Southern Europe: let’s be fire-smart! International Journal of Wildland Fire 32(6), 942-950. https://doi.org/10.1071/WF22094
Reyes, O., Casal, M. 2008. Regeneration models and plant regenerative types related to the intensity of fire in Atlantic shrubland and woodland species. Journal of Vegetation Science 19(4), 575-583. https://doi.org/10.3170/2008-8-18412
Ribeiro, L. M., Rodrigues, A., Lucas, D., Viegas, D. X. 2020. The impact on structures of the Pedrógão Grande fire complex in June 2017 (Portugal). Fire 3(4), 57. https://doi.org/10.3390/fire3040057
Rodrigues, M., Jiménez-Ruano, A., de la Riva J. 2020. Fire regime dynamics in mainland Spain. Part 1: Drivers of change. Science of the Total Environment 721, 135841. https://doi.org/10.1016/j.scitotenv.2019.135841
Rodríguez, S. 2025. Vernacular architecture in the Navia river basin (Asturias, Spain). In: M. Rönn, H. Teräväinen, L. Östman (Eds.), Reflecting History in Architecture and Vernacular Design. Directing Sustainable Futures. Kulturlandskapet, Fjällbacka (Suecia), pp. 16-50. https://hdl.handle.net/10651/78585
San-Miguel-Ayanz, J., Schulte, E., Schmuck, G., Camia, A., Strobl, P., Liberta, G., Giovando, C., Boca, R., Sedano, F., Kempeneers, P., McInerney, D., Withmore, C., Santos de Oliveira, S., Rodrigues, M., Durrant, T., Corti, P., Oehler, F., Vilar, L., Amatulli, G. 2012. Comprehensive monitoring of wildfires in Europe: the European forest fire information system (EFFIS). In: Approaches to Managing Disaster-Assessing Hazards, Emergencies and Disaster Impacts 10, 28441. http://doi.org/10.5772/28441
Serra, P., Vera, A., Tulla, A. F., Salvati, L. 2014. Beyond urban–rural dichotomy: Exploring socioeconomic and land-use processes of change in Spain (1991–2011). Applied Geography 55, 71-81. https://doi.org/10.1016/j.apgeog.2014.09.005
Shannon, C.E. 1948. A mathematical theory of communication. The Bell System Technical Journal 27(4), 623–656. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Suárez-Seoane, S., Colina, A., García-Candanedo, L., Roces-Diaz, J.V., Fernández-Guisuraga, J.M., Pérez-Rodriguez, L.A., Marcos, E., Beltrán, D., Menéndez, R., Salgado, L., Rodríguez-Gallego, A., López- Pfitzer, D., Calvo, L., Santín, C. 2024. Evaluación de los impactos medioambientales producidos por el incendio de Foyedo ocurrido en los concejos de Valdés y Tineo (Asturias) en primavera de 2023. Informe técnico de resultados. Consejería de Medio Rural y Cohesión Territorial, Principado de Asturias. https://cucc-uo.es/evaluacion-de-los-impactos-medioambientales-producidos-por-el-incendio-de-foyedo-asturias-ocurrido-en-primavera-de-2023/ (last access: 25/11/2025).
Tecnoma. 2010. Estudio básico para la protección contra los incendios forestales en el interfaz urbano forestal. Ministry of Agriculture, Fisheries and Food (MAPA) Available at: https://www.miteco.gob.es/es/biodiversidad/temas/incendiosforestales/estudio_interfaz.html (last access: 25/11/2025).
Teixido, A.L., Quintanilla, L.G., Carreno, F., Gutierrez, D. 2010. Impacts of changes in land use and fragmentation patterns on Atlantic coastal forests in northern Spain. Journal of Environmental Management 91(4), 879-886. https://doi.org/10.1016/j.jenvman.2009.11.004
Turco, M., von Hardenberg, J., AghaKouchak, A., Llasat, M.C., Provenzale, A., Trigo, R.M. 2017. On the key role of droughts in the dynamics of summer fires in Mediterranean Europe. Scientific Reports 7(1), 81. https://doi.org/10.1038/s41598-017-00116-9
Verheyen, K., Gillerot, L., Blondeel, H., De Frenne, P., De Pauw, K., Depauw, L., Lorer, E., Sanczuk, P., Schreel, J., Vanneste, T., Wei, L., Landuyt, D. 2024. Forest canopies as nature‐based solutions to mitigate global change effects on people and nature. Journal of Ecology 112(11), 2451-2461. https://doi.org/10.1111/1365-2745.14345
Xie, Q., Dash, J., Huete, A., Jiang, A., Yin, G., Ding, Y., Peng, D., Hall, C.C., Brown, L., Shi, Y., Ye, H., Dong, Y., Huang, W. 2019. Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery. International Journal of Applied Earth Observation and Geoinformation 80, 187-195. https://doi.org/10.1016/j.jag.2019.04.019
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Susana Suárez-Seoane, Lucía García-Candanedo, Daniel Pfitzer-López, Jose Manuel Fernández-Guisuraga, Arturo Colina-Vuelta, Juan Luis Martín-Correa, Leonor calvo, Jose Valentín Roces-Diaz

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain copyright of articles and authorize Cuadernos de Investigación Geográfica / Geographical Research Letters the first publication. They are free to share and redistribute the article without obtaining permission from the publisher as long as they give appropriate credit to the editor and the journal.
Self-archiving is allowed too. In fact, it is recommendable to deposit a PDF version of the paper in academic and/or institutional repositories.
It is recommended to include the DOI number.
This journal is licensed under a Creative Commons Attribution 4.0 International LicenseFunding data
-
Gobierno del Principado de Asturias
Grant numbers FUO-214-23;IDE/2024/000780;MRR-24-BIODIVERSIDAD-B10;AYUD0029T01 -
Ministerio de Ciencia, Tecnología e Innovación
Grant numbers PID2022-139156OB-C22; PID2022-139156OB-C21




