Desarrollo y aplicación de un índice multifactorial de conectividad de sedimentos a escala de cuenca

Autores/as

  • J.M. Quiñonero-Rubio Universidad de Murcia
  • C. Boix-Fayos Grupo de Erosiony Conservacion de Suelos, CEBAS-CSIC
  • J. de Vente Departamento de Conservacion de Suelos y Agua y Manejo de Residuos Organicos, Grupo de Erosiony Conservacion de Suelos, CEBAS-CSIC

DOI:

https://doi.org/10.18172/cig.1988

Palabras clave:

transporte de sedimentos, factores geomorficos, indice de conectividad, dique, cambios de uso del suelo,

Resumen

Este trabajo presenta una nueva metodologia para la estimacion de la conectividad de sedimentos a escala de cuenca. El indice propuesto CCI (Indice de Conectividad de Cuenca), se basa en la combinacion de factores en un entorno SIG que condicionan la conectividad de sedimentos en diferentes elementos (laderas, subcuencas, cauces) que componen el sistema fluvial. Los factores evaluados en el modelo son la capacidad de transporte en laderas (TC), la eficiencia como trampa de diques de retencion de sedimentos (TE), la presencia de barreras geomorfologicas (GF), las condiciones del flujo (FC) y la capacidad de transporte de los cauces (SP). Aplicamos este indice en la cuenca del Alto Taibilla (314 km2) (SE de Espana) para distintos escenarios de uso del suelo (1956 y 2006) y de manejo (diques de retencion de sedimentos). Esta cuenca ha sufrido importantes cambios de cobertura en los ultimos 50 anos. El intenso proceso de abandono agricola y la implantacion de reforestaciones y diques de retencion de sedimentos han causado un importante impacto en la dinamica de exportacion de sedimentos de la cuenca. El CCI permite identificar que elementos del paisaje tienen un mayor impacto en la (des)conectividad de sedimentos a escala de cuenca. Los resultados muestran una reduccion importante de la conectividad del 76% entre 1956 y 2006. Sin embargo, se observa que los diques de retencion de sedimentos solo contribuyen a esta reduccion en un 3%. Los cambios de uso del suelo provocan un impacto elevado en la reduccion de la conectividad de sedimentos, salvo en sectores muy localizados con fuertes pendientes, o bien con el desarrollo de la agricultura junto a los principales cauces de la red de drenaje. El CCI resulta un metodo contrastado de facil aplicacion que puede ser utilizado para realizar analisis espacio-temporales de la conectividad de sedimentos en areas con alteraciones naturales y antropicas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ambroise, B. 2004. Variable ‘active’ versus ‘contributing’ areas or periods: a necessary distinction. Hydrological Processes 18, 1149-1155. DOI: https://doi.org/10.1002/hyp.5536

Beguería, S., López-Moreno, J.I., Gómez-Villar, A., Rubio, V., Lana-Renault, N., García-Ruiz, J.M. 2006. Fluvial adjustments to soil erosion and plant cover changes in the Central Spanish Pyrenees. Geografiska Annaler, Series A: Physical Geography 88, 177-186. DOI: https://doi.org/10.1111/j.1468-0459.2006.00293.x

Boix-Fayos, C., Barberá, G.G., López-Bermúdez, F., Castillo, V.M. 2007. Effects of check dams, reforestation and land-use changes on river channel morphology: Case study of the Rogativa catchment (Murcia, Spain). Geomorphology 91, 103-123. DOI: https://doi.org/10.1016/j.geomorph.2007.02.003

Boix-Fayos, C., De Vente, J., Martínez-Mena, M., Barberá, G.G., Castillo, V. 2008. The impact of land use change and check-dams on catchment sediment yield. Hydrological Processes 22, 4922-4935. DOI: https://doi.org/10.1002/hyp.7115

Borselli, L., Cassi, P., Torri, D. 2008. Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena 75, 268-277. DOI: https://doi.org/10.1016/j.catena.2008.07.006

Bracken, L.J., Croke, J. 2007. The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems. Hydrological Processes 21, 1749-1763. DOI: https://doi.org/10.1002/hyp.6313

Brierley, G.J., Fryi, K., Jain, V. 2006. Landscape connectivity: The geographic basis of geomorphic applications. Area 38, 165-174. DOI: https://doi.org/10.1111/j.1475-4762.2006.00671.x

Brown, C.B. 1943. Discussion of Sedimentation in reservoirs, by J. Witzig. Transactions of the American Society of Civil Engineers 69, 1493-1500.

Cammeraat, L.H. 2002. A review of two strongly contrasting geomorphological systems within the context of scale. Earth Surface Processes and Landforms 27, 1201-1222. DOI: https://doi.org/10.1002/esp.421

Cantón, Y., Solé-Benet, A., de Vente, J., Boix-Fayos, C., Calvo-Cases, A., Asencio, C., Puigdefábregas, J. 2011. A review of runoff generation and soil erosion across scales in semiarid south-eastern Spain. Journal of Arid Environments 75, 1254-1261. DOI: https://doi.org/10.1016/j.jaridenv.2011.03.004

Coppus, R., Imeson, A.C. 2002. Extreme events controlling erosion and sediment transport in a semi-arid sub-andean valley. Earth Surface Processes and Landforms 27, 1365-1375. DOI: https://doi.org/10.1002/esp.435

De Vente, J., Boix-Fayos, C., Blas-Larrosa, J., González-Barberá, G., Castillo, V. 2007. Restauración Hidrológico-Forestal: Efectos Sobre el Ciclo Hidrológico. Cuenca Hidrográfica del Río Segura. Informe sobre la Clasificación de Usos del Suelo, LAI y Profundidad de Raíces, CEBAS, Murcia.

De Vente, J., Poesen, J., Verstraeten, G., Van Rompaey, A., Govers, G. 2008. Spatially distributed modelling of soil erosion and sediment yield at regional scales in Spain. Global and Planetary Change 60, 393-415. DOI: https://doi.org/10.1016/j.gloplacha.2007.05.002

Dietrich, W.E., Belligi, D.G., Sklar, L.S., Stock, J.D., Heimsath, A.M., Roering, J.J. 2003. Geomorphic transport laws for predicting landscape form and dynamics. Prediction in Geomorphology. Geophysical Monograph 135. American Geophysical Union, Washington, 30 pp.

Eastman, J.R. 2003. IDRISI Kilimanjaro Guide to GIS and Image Processing, Clark Labs, Worcester.

Faulkner, H., Alexander, R., Zukowskyj, P. 2008. Slope-channel coupling between pipes, gullies and tributary channels in the Mocatán catchment badlands, Southeast Spain. Earth Surface Processes and Landforms 33, 1242-1260. DOI: https://doi.org/10.1002/esp.1610

Fryirs, K., Brierley, G.J. 1999. Slope-channel decoupling in Wolumla catchment, New South Wales, Australia: the changing nature of sediment sources following European settlement. Catena 35, 41-63. DOI: https://doi.org/10.1016/S0341-8162(98)00119-2

Fryirs, K., Brierley, G.J. 2001. Variability in sediment delivery and storage along river courses in Bega catchment, NSW, Australia: implications for geomorphic river recovery. Geomorphology 38, 237-265. DOI: https://doi.org/10.1016/S0169-555X(00)00093-3

Fryirs, K., Brierley, G.J. 2005. Practical application of the River Styles® framework as a tool for catchment-wide river management: A case study from Bega catchment, New South Wales, 230 pp.

Fryirs, K.A., Brierley, G.J., Preston, N.J., Kasay, M. 2007a. Buffers, barriers and blankets: The (dis)connectivity of catchment-scale sediment cascades. Catena 70, 49-67. DOI: https://doi.org/10.1016/j.catena.2006.07.007

Fryirs, K.A., Brierley, G.J., Preston, N.J., Spencer, J. 2007b. Catchment-scale (dis)connectivity in sediment flux in the upper Hunter catchment, New South Wales, Australia. Geomorphology 84, 297-316. DOI: https://doi.org/10.1016/j.geomorph.2006.01.044

Gallart, F., Balasch, C., Regüés, D., Soler, M. 2005. Catchment dynamics in a Mediterranean mountain environment: the Vallcebre research basins (South Eastern Pyrenees). II: Temporal and spatial dynamics of erosion and stream sediment transport. En Catchment Dynamics and River Processes: Mediterranean and other climate regions, C. García, R. Batalla (eds.), Elsevier, Amsterdam, pp. 17-28. DOI: https://doi.org/10.1016/S0928-2025(05)80008-2

García-Ruiz, J.M., Lana-Renault, N., Beguería, S., Lasanta, T., Regüés, D., Nadal-Romero, E., Serrano-Muela, P., López-Moreno, J.I., Alvera, B., Martí-Bono, C., Alatorre, L.C. 2010.

From plot to regional scales: Interactions of slope and catchment hydrological and geomorphic processes in the Spanish Pyrenees. Geomorphology 120, 248-257. DOI: https://doi.org/10.1016/j.geomorph.2010.03.038

Hancock, G.R., Coulthard, T.J. 2012. Channel movement and erosion response to rainfall variability in southeast Australia. Hydrological Processes 26, 663-673. DOI: https://doi.org/10.1002/hyp.8166

Hooke, J. 2003. Coarse sediment connectivity in river channel systems: a conceptual framework and methodology. Geomorphology 56, 79-94. DOI: https://doi.org/10.1016/S0169-555X(03)00047-3

Hooke, J. 2006. Human impacts on fluvial systems in the Mediterranean region. Geomorphology 79, 311-335. DOI: https://doi.org/10.1016/j.geomorph.2006.06.036

IGME 1980. Hojas de la Serie MAGNA 888 (Yetas), 899 (Yetas de Abajo), 909 (Nerpio) y 910 (Caravaca). Instituto Geológico y Minero de España, Madrid, 34 pp., 54 pp., 36 pp, 34 pp.

Kasai, M., Brierley, G.J., Page, M.J., Marutani, T., Trustrum, N.A. 2005. Impacts of land use change on patterns of sediment flux in Weraamaia catchment, New Zealand. Catena 64, 27-60. DOI: https://doi.org/10.1016/j.catena.2005.06.014

Keesstra, S.D., Van Dam, O., Verstraeten, G., Van Huissteden, J. 2009. Changing sediment dynamics due to natural reforestation in the Dragonja catchment, SW Slovenia. Catena 78, 60-71. DOI: https://doi.org/10.1016/j.catena.2009.02.021

Kirkby, M.J., Bracken, L., Reany, S. 2002. The influence of land use, soils and topography on the delivery of hillslope runoff to channels in SE Spain. Earth Surface Processes and Landforms 27, 1459-1473. DOI: https://doi.org/10.1002/esp.441

Lana-Renault, N. 2011. El efecto de los cambios de cubierta vegetal en la respuesta hidrológica y sedimentológica de áreas de montaña: la cuenca experimental de Arnás, Pirineo central. Consejo de Protección de la Naturaleza de Aragón, Zaragoza, 189 pp.

Lane S.N., Brookes, C.J., Kirkby, M.J., Holden, J. 2004. A network-index-based version of TOPMODEL for use with high-resolution digital topographic data. Hydrological Processes 18, 191-201. DOI: https://doi.org/10.1002/hyp.5208

Lesschen, J.P., Kok, K., Verburg, P.H., Cammeraat, L.H. 2007. Identification of vulnerable areas for gully erosion under different scenarios of land abandonment in Southeast Spain. Catena 71, 110-121. DOI: https://doi.org/10.1016/j.catena.2006.05.014

López-Vicente, M., Poesen, J., Navas, A., Gaspar, L. 2013. Predicting runoff and sediment connectivity and soil erosion by water for different land use scenarios in the Spanish Pre-Pyrenees. Catena 102, 62-67. DOI: https://doi.org/10.1016/j.catena.2011.01.001

McHug, M., Wood, G., Walling, D.E., Morgan, R., Zhang, Z., Anthony, S., Hutchins, M. 2002. Prediction of sediment delivery to watercourses from land, Phase II. R&D Technical Report no. P2-209, National Soil Resource Centre, Cranfield University, Cranfield.

Meerkerk, A.L., Van Wesemael, B., Bellin, N. 2009. Application of connectivity theory to model the impact of terrace failure on runoff in semi-arid catchments. Hydrological Processes 23, 2792-2803. DOI: https://doi.org/10.1002/hyp.7376

Michaeliodes, K., Wainwright, J. 2002. Modelling the effects of hillslope-channel coupling on catchment hydrological response. Earth Surface Processes and Landforms 27, 1441-1457. DOI: https://doi.org/10.1002/esp.440

Prosser, I.P., Rustomji, P. 2000. Sediment transport capacity relations for overland flow. Progress in Physical Geography 24, 179-193. DOI: https://doi.org/10.1191/030913300669852483

Quiñonero-Rubio, J.M., Boix-Fayos, C., Nadeu, E., de Vente, J. En revisión. Evaluation of the effectiveness of land use change and hydrological forest restoration works to reduce catchment sediment yield. Land Degradation and Development.

Reaney, S.M. 2008. The use of agent based modelling techniques in hydrology: determining the spatial and temporal origin of channel flow in semi-arid catchments. Earth Surface Processes and Landforms 33, 317-327. DOI: https://doi.org/10.1002/esp.1540

Reaney, S.M., Bracken, L.J., Kirkby, M.J. 2007. Use of the Connectivity of Runoff Model (CRUM) to investigate the influence of storm characteristics on runoff generation and connectivity in semi-arid areas. Hydrological Processes 21, 894-906. DOI: https://doi.org/10.1002/hyp.6281

Sandercock, P.J., Hooke, J.M. 2011. Vegetation effects on sediment connectivity and processes in an ephemeral channel in SE Spain. Journal of Arid Environments 75, 239-254. DOI: https://doi.org/10.1016/j.jaridenv.2010.10.005

Sougnez, N., Van Wesemael, B., Vanacker, V. 2011. Low erosion rates measured for steep, sparsely vegetated catchments in southeast Spain. Catena 84, 1-11. DOI: https://doi.org/10.1016/j.catena.2010.08.010

Van Oost, K., Govers, G., Desmet, P.J.J. 2000. Evaluating the effects of changes in landscape structure on soil erosion by water and tillage. Landscape Ecology 15, 577-589. DOI: https://doi.org/10.1023/A:1008198215674

Van Rompaey, A. J.J., Verstraeten, G., Van Oost, K., Govers, G., Poesen, J. 2001. Modelling mean annual sediment yield using a distributed approach. Earth Surface Processes and Landforms 26, 1221-1236. DOI: https://doi.org/10.1002/esp.275

Verstraeten, G., Van Oost, K., Van Rompaey, A., Poesen, J., Govers, G. 2002. Evaluating an integrated approach to catchment management to reduce soil loss and sediment pollution through modelling. Soil Use and Management 19, 386-394. DOI: https://doi.org/10.1111/j.1475-2743.2002.tb00257.x

Verstraeten, G., Prosser, I.P., Fogarty, P. 2007. Predicting the spatial patterns of hillslope sediment delivery to river channels in the Murrumbidgee catchment, Australia. Journal of Hydrology 334, 440-454. DOI: https://doi.org/10.1016/j.jhydrol.2006.10.025

Vigiak, O., Borselli, L., Newham, L.T.H., McInnes, J., Roberts, A.M. 2012. Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery ratio. Geomorphology 138, 74-88. DOI: https://doi.org/10.1016/j.geomorph.2011.08.026

Walling, D.E. 1983. The sediment delivery problem. Journal of Hydrology 65, 209-237. DOI: https://doi.org/10.1016/0022-1694(83)90217-2

Descargas

Publicado

2013-07-08

Cómo citar

1.
Quiñonero-Rubio J, Boix-Fayos C, Vente J de. Desarrollo y aplicación de un índice multifactorial de conectividad de sedimentos a escala de cuenca. CIG [Internet]. 8 de julio de 2013 [citado 22 de febrero de 2025];39(2):203-2. Disponible en: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/1988

Número

Sección

Artículos