Calibración y aplicación de un modelo de erosión y dinámica del carbono (SPEROS-C) a doce pequeñas cuencas del sureste español
DOI:
https://doi.org/10.18172/cig.1989Palabras clave:
transporte de sedimentos, factores geomorficos, indice de conectividad, dique, cambios de uso del suelo,Resumen
Este trabajo presenta una nueva metodologia para la estimacion de la conectividad de sedimentos a escala de cuenca. El indice propuesto CCI (Indice de Conectividad de Cuenca), se basa en la combinacion de factores en un entorno SIG que condicionan la conectividad de sedimentos en diferentes elementos (laderas, subcuencas, cauces) que componen el sistema fluvial. Los factores evaluados en el modelo son la capacidad de transporte en laderas (TC), la eficiencia como trampa de diques de retencion de sedimentos (TE), la presencia de barreras geomorfologicas (GF), las condiciones del flujo (FC) y la capacidad de transporte de los cauces (SP). Aplicamos este indice en la cuenca del Alto Taibilla (314 km2) (SE de Espana) para distintos escenarios de uso del suelo (1956 y 2006) y de manejo (diques de retencion de sedimentos). Esta cuenca ha sufrido importantes cambios de cobertura en los ultimos 50 anos. El intenso proceso de abandono agricola y la implantacion de reforestaciones y diques de retencion de sedimentos han causado un importante impacto en la dinamica de exportacion de sedimentos de la cuenca. El CCI permite identificar que elementos del paisaje tienen un mayor impacto en la (des)conectividad de sedimentos a escala de cuenca. Los resultados muestran una reduccion importante de la conectividad del 76% entre 1956 y 2006. Sin embargo, se observa que los diques de retencion de sedimentos solo contribuyen a esta reduccion en un 3%. Los cambios de uso del suelo provocan un impacto elevado en la reduccion de la conectividad de sedimentos, salvo en sectores muy localizados con fuertes pendientes, o bien con el desarrollo de la agricultura junto a los principales cauces de la red de drenaje. El CCI resulta un metodo contrastado de facil aplicacion que puede ser utilizado para realizar analisis espacio-temporales de la conectividad de sedimentos en areas con alteraciones naturales y antropicas.Descargas
Citas
Alías, L.J., Ortíz, R., Hernández, J., Martínez, J., Linares, D., Alcaraz, F., Sánchez, A., Marín, P. 1991. Proyecto LUCDEME. Mapa de suelos E=1:100 000 de la hoja de Caravaca-910. Ministerio de Agricultura, ICONA, Universidad de Murcia.
Andrén, O., Kätterer, T. 1997. ICBM: The introductory carbon balance model for exploration of soil carbon balances. Ecological Applications 7, 1226-1236. DOI: https://doi.org/10.1890/1051-0761(1997)007[1226:ITICBM]2.0.CO;2
Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R. 1998. Large area hydrologic modeling and assessment. Part I: Model development. Journal of the American Water Resources Association 34, 73-89. DOI: https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
Berhe, A.A., Harte, J., Harden, J.W., Torn, M.S. 2007. The significance of the erosion-induced terrestrial carbon sink. BioScience 57, 337-346. DOI: https://doi.org/10.1641/B570408
Beven, K.J., Kirkby, M.J. 1979. A physically based variable contributing area model of basin hydrology / Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrological Sciences Bulletin 24, 43-69. DOI: https://doi.org/10.1080/02626667909491834
Billings, S.A., Buddemeier, R.W., Richter, D.D., Van Oost, K., Bohling, G. 2010. A simple method for estimating the influence of eroding soil profiles on atmospheric CO2. Global Biogeochemical Cycles 24, GB2001. DOI: https://doi.org/10.1029/2009GB003560
Boix-Fayos, C., Barberá, G.G., López-Bermúdez, F., Castillo, V.M. 2007. Effects of check dams, reforestation and land-use changes on river channel morphology: Case study of the Rogativa catchment (Murcia, Spain). Geomorphology 91, 103-123. DOI: https://doi.org/10.1016/j.geomorph.2007.02.003
Boix-Fayos, C., de Vente, J., Martínez-Mena, M., Barberá, G.G., Castillo, V. 2008. The impact of land use change and check-dams on catchment sediment yield. Hydrological Processes 22, 4922-4935. DOI: https://doi.org/10.1002/hyp.7115
Boix-Fayos, C., de Vente, J., Albaladejo, J., Martínez-Mena, M. 2009. Soil carbon erosion and stock as affected by land use changes at the catchment scale in Mediterranean ecosystems. Agriculture, Ecosystems & Environment 133, 75-85. DOI: https://doi.org/10.1016/j.agee.2009.05.013
Chaplot, V.A.M., Rumpel, C., Valentin, C. 2005. Water erosion impact on soil and carbon redistributions within uplands of Mekong River. Global Biogeochemical Cycles 19, GB4004. DOI: https://doi.org/10.1029/2005GB002493
De Vente, J., Poesen, J., Verstraeten, G., Van Rompaey, A., Govers, G. 2008. Spatially distributed modelling of soil erosion and sediment yield at regional scales in Spain. Global and Planetary Change 60, 393-415. DOI: https://doi.org/10.1016/j.gloplacha.2007.05.002
Desmet, P.J.J., Govers, G. 1996. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. Journal of Soil and Water Conservation 51, 427-433.
Dlugoss, V., Fiener, P., Van Oost, K., Schneider, K. 2012. Model based analysis of lateral and vertical soil carbon fluxes induced by soil redistribution processes in a small agricultural catchment. Earth Surface Processes and Landforms37, 193-208. DOI: https://doi.org/10.1002/esp.2246
Einsele, G., Yan, J., Hinderer, M. 2001. Atmospheric carbon burial in modern lake basins and its significance for the global carbon budget. Global and Planetary Change 30, 167-195. DOI: https://doi.org/10.1016/S0921-8181(01)00105-9
Flanagan, D.C., Nearing, M.A. 1995. USDA - Water Erosion Prediction Project (WEPP) Hillslope Profile and Watershed Model Documentation. USDA- Agricultural Research Service, NSERL Report No. 10. National Soil Erosion Research Laboratory, West Lafayette, Indiana.
Gregorich, E.G., Greer, K.J., Anderson, D.W., Liang, B.C. 1998. Carbon distribution and losses: Erosion and deposition effects. Soil & Tillage Research 47, 291-302. DOI: https://doi.org/10.1016/S0167-1987(98)00117-2
Harden, J.W., Sharpe, J.M., Parton, W.J., Ojima, D.S., Fries, T.L., Huntington, T.G., Dabney, S.M. 1999. Dynamic replacement and loss of soil carbon on eroding cropland. Global Biogeochemical Cycles 13, 885-901. DOI: https://doi.org/10.1029/1999GB900061
Haregeweyn, N., Poesen, J., Deckers, J., Nyssen, J., Haile, M., Govers, G., Verstraeten, G., Moeyersons, J. 2008. Sediment-bound nutrient export from micro-dam catchments in Northern Ethiopia. Land Degradation & Development 19, 136-152. DOI: https://doi.org/10.1002/ldr.830
Infraestructura de datos espaciales de la Región de Murcia (IDERM) 2011. Ortofoto regional del vuelo de 1981. Diponible en: http://cartomur.imida.es/visorcartoteca/ (fecha de acceso: 20/06/2011).
Instituto Geológico y Minero de España (IGME) 1979. Mapa geológico de España 1:50000. Nerpio 909, 23-26.
Jacinthe, P.A. 2001. Assessing Water Erosion Impacts on Soil Carbon Pools and Fluxes. En Assessment Methods for Soil Carbon. Advances in Soil Science, R. Lal (ed.), CRC Press, Boca Raton, Florida, pp. 427-449.
Jacinthe, P.A., Lal, R., Kimble, J.M. 2002. Carbon dioxide evolution in runoff from simulated rainfall on long-term no-till and plowed soils in southwestern Ohio. Soil & Tillage Research 66, 23-33. DOI: https://doi.org/10.1016/S0167-1987(02)00010-7
Jacinthe, P.A., Lal, R., Owens, L.B., Hothen, D.L. 2004. Transport of labile carbon in runoff as affected by land use and rainfall characteristics. Soil & Tillage Research 77, 111-123. DOI: https://doi.org/10.1016/j.still.2003.11.004
Juárez, S., Rumpel, C., Mchunu, C., Chaplot, V. 2011. Carbon mineralization and lignin content of eroded sediments from a grazed watershed of South-Africa. Geoderma 167-168, 247-253. DOI: https://doi.org/10.1016/j.geoderma.2011.09.007
Lal, R. 2003. Soil erosion and the global carbon budget. Environment International 29, 437-450. DOI: https://doi.org/10.1016/S0160-4120(02)00192-7
Liu, S.G., Bliss, N., Sundquist, E., Huntington, T.G. 2003. Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition. Global Biogeochemical Cycles 17, 1074. DOI: https://doi.org/10.1029/2002GB002010
McCarty, G.W., Ritchie, J.C. 2002. Impact of soil movement on carbon sequestration in agricultural ecosystems. Environmental Pollution 116, 423-430. DOI: https://doi.org/10.1016/S0269-7491(01)00219-6
McCarty, G., Pachevsky, Y., Ritchie, J. 2009. Impact of sedimentation on wetland carbon sequestration in an agricultural watershed. Journal of Environmental Quality 38, 804-813. DOI: https://doi.org/10.2134/jeq2008.0012
Moorman, T.B., Cambardella, C.A., James, D.E., Karlen, D.L., Kramer, L.A. 2004. Quantification of tillage and landscape effects on soil carbon in small Iowa watersheds. Soil & Tillage Research 78, 225-236. DOI: https://doi.org/10.1016/j.still.2004.02.014
Nadeu, E., Berhe, A.A., de Vente, J., Boix-Fayos, C. 2012. Erosion, deposition and replacement of soil organic carbon in Mediterranean catchments: a geomorphological, isotopic and land use change approach. Biogeosciences 9, 1099-1111. DOI: https://doi.org/10.5194/bg-9-1099-2012
Nash, J.E., Sutcliffe, J.V. 1970. River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology 10, 282-290. DOI: https://doi.org/10.1016/0022-1694(70)90255-6
Parton, W.J., Schimel, D.S., Cole, C.V., Ojima, D.S. 1987. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal 51, 1173-1179. DOI: https://doi.org/10.2136/sssaj1987.03615995005100050015x
Pennock, D.J., Frick, A.H. 2001. The role of field studies in landscape-scale applications of process models: an example of soil redistribution and soil organic carbon modeling using CENTURY. Soil & Tillage Research 58, 183-191. DOI: https://doi.org/10.1016/S0167-1987(00)00167-7
Polyakov, V.O., Lal, R. 2004. Soil erosion and carbon dynamics under simulated rainfall. Soil Science 169, 590-599. DOI: https://doi.org/10.1097/01.ss.0000138414.84427.40
Renschler, C.C. 2003. Designing geo-spatial interfaces to scale process modes: the GeoWEPP approach. Hydrological Processes 17, 1005-1017. DOI: https://doi.org/10.1002/hyp.1177
Rosenbloom, N.A., Doney, S.C., Schimel, D.S. 2001. Geomorphic evolution of soil texture and organic matter in eroding landscapes. Global Biogeochemical Cycles 15, 365-381. DOI: https://doi.org/10.1029/1999GB001251
Schlesinger, W.H. 1990. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348, 232-234. DOI: https://doi.org/10.1038/348232a0
Shao, J.X., Tu, D. 1995. The Jackknife and Bootstrap. Springer, New York. DOI: https://doi.org/10.1007/978-1-4612-0795-5
Smith, S.V., Sleezer, R.O., Renwick, W.H., Buddemeier, R. 2005. Fates of eroded soil organic carbon: Mississippi basin case study. Ecological Applications 15, 1929-1940. DOI: https://doi.org/10.1890/05-0073
Stallard, R.F. 1998. Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial. Global Biogeochemical Cycles 12, 231-257. DOI: https://doi.org/10.1029/98GB00741
Starr, B. 2001. Assessing the Impact of Erosion on Soil Organic Carbon Pools and Fluxes. En Assessment Methods for Soil Carbon. Advances in Soil Science, R. Lal (ed), CRC Press, Boca Ratón, Florida, pp. 403-416.
Starr, G.C., L, R., Owens, L., Kimble, J. 2008. Empirical relationships for soil organic carbon transport from agricultural watersheds in Ohio. Land Degradation & Development 19, 57-64. DOI: https://doi.org/10.1002/ldr.806
Van Hemelryck, H., Fiener, P., Van Oost, K., Govers, G., Merckx, R. 2010. The effect of soil redistribution on soil organic carbon: An experimental study. Biogeosciences 7, 3971-3986. DOI: https://doi.org/10.5194/bg-7-3971-2010
Van Hemeltyck, H., Govers, G., Van Oost, K., Merckx, R. 2011. Evaluating the impact of soil redistribution on the in situ mineralization of soil organic carbon. Earth Surface Process and Landforms 36, 427-438. DOI: https://doi.org/10.1002/esp.2055
Van Oost, K., Govers, G., Van Muysen, W. 2003. A process-based conversion model for caesium- 137 derived erosion rates on agricultural land: An integrated spatial approach. Earth Surface Processes and Landforms 28, 187-207. DOI: https://doi.org/10.1002/esp.446
Van Oost, K., Govers, G., Quine, T.A., Heckrath, G., Olesen, J.E., De Gryze, S., Merckx, R. 2005.
Landscape-scale modeling of carbon cycling under the impact of soil redistribution: The role of tillage erosion. Global Biogeochemical Cycles 19, 1733-1739.
Van Oost, K., Quine, T.A., Govers, G., De Gryze, S., Six, J., Harden, J.W., Ritchie, J.C., McCarty, G.W., Heckrath, G., Kosmas, C., Giraldez, J.V., Da Silva, J.R.M., Merckx, R. 2007. The impact of agricultural soil erosion on the global carbon cycle. Science 318, 626-629. DOI: https://doi.org/10.1126/science.1145724
Van Oost, K., Cerdan, O., Quine, T.A. 2009. Accelerated sediment fluxes by water and tillage erosion on European agricultural land. Earth Surface Processes and Landforms 34, 1625-1634. DOI: https://doi.org/10.1002/esp.1852
Verstraeten, G., Prosser, I.P., Fogarty, P. 2007. Predicting the spatial patterns of hillslope sediment delivery to river channels in the Murrumbidgee catchment, Australia. Journal of Hydrology 334, 440-454. DOI: https://doi.org/10.1016/j.jhydrol.2006.10.025
Yadav, V., Malanson, G.P. 2009. Modeling impacts of erosion and deposition on soil organic carbon in the Big Creek Basin of southern Illinois. Geomorphology 106, 304-314. DOI: https://doi.org/10.1016/j.geomorph.2008.11.011
Yadav, V., Malanson, G.P., Bekele, E., Lant, C. 2009. Modeling watershed-scale sequestration of soil organic carbon for carbon credit programs. Applied Geography 29, 488-500. DOI: https://doi.org/10.1016/j.apgeog.2009.04.001
Yeomans, J.C., Bemmer, J.M. 1988. A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science & Plant Analysis 19, 1467-1476. DOI: https://doi.org/10.1080/00103628809368027
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
El autor o autora conserva todos los derechos sobre su artículo y cede a la revista el derecho de la primera publicación, no siendo necesaria la autorización de la revista para su difusión una vez publicado. Una vez publicada la versión del editor el autor está obligado a hacer referencia a ella en las versiones archivadas en los repositorios personales o institucionales.
El artículo se publicará con una licencia Creative Commons de Atribución, que permite a terceros utilizar lo publicado siempre que se mencione la autoría del trabajo y la primera publicación en esta revista.
Se recomienda a los autores/as el archivo de la versión de editor en repositorios institucionales.