Spatial and temporal variability of Standardized Precipitation Index over Indochina Peninsula

Authors

  • T. M. Vu Glenn Department of Civil Engineering Clemson University
  • A. Mishra Clemson University

DOI:

https://doi.org/10.18172/cig.2928

Keywords:

drought, wetness, trends, Indochina Peninsula

Abstract

Indochina Peninsula has abundant water resources; however, most of the rain falls during the wet season. An arid condition is quite pronounced throughout the dry season. The majority of population depends on the agriculture as the main source of livelihood income. It is, therefore, important to study the drought and wetness over the region because crops are vulnerable to extreme climatic conditions. We used gridded precipitation APHRODITE and Standardized Precipitation Index (SPI) to evaluate the spatial and temporal variability of drought and wetness over Indochina peninsula. Nonparametric Modified Mann-Kendall (MMK) trend test was applied to determine the SPI trends over this region. There is a decrease in precipitation over a large part of Indochina during winter (dry season) and an increasing pattern during summer (rainy season). The increasing trend of SPI indicates an increase in wet condition over most parts of Indochina peninsula except for Red River Delta in Vietnam, central parts of Vietnam/Laos and western parts of Cambodia.

Downloads

Download data is not yet available.

References

Birsan, M.V., Molnar, P., Burlando, P., Pfaundler, M. 2005. Streamflow trends in Switzerland. Journal of Hydrology 314, 312-329.

Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogee, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., De Noblet, N., Friend, A.D., Friedlingstein, P., Grunwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J.M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J.F., Sanz, M.J., Schulze, E.D., Vesala, T., Valentini, R. 2005 Europe-wide reduction in primary productivity caused by the heat and drought in 2003, Nature 437, 529–533.

Dai, A. 2013. Increasing drought under global warming in observations and models. Nature Climate Change 3, 52-58

de Martonne, E. 1926. Une nouvelle fonction climatologique: L’Indice d’aridite. La Meteorologie 2, 449–458.

Douglas, E.M., Vogel, R.M., Kroll, C.N. 2000. Trends in floods and low flows in the United States: impact of spatial correlation. Journal of Hydrology 240, 90–105.

Evans, M.N., Fairbanks, R.G., Rubenstone, J.L. 1998. A proxy index of ENSO teleconnections. Nature 394, 732-733.

Ganguli, P., Reddy, M.J. 2014. Evaluation of trends and multivariate frequency analysis of droughts in three meteorological subdivisions of western India. International Journal of Climatology 34, 911-928

Gocic, M., Trajovic, S.P. 2013. Analysis of precipitation and drought data in Serbia over the period 1980-2010. Journal of Hydrology 494 (3–4), 32–42.

Hamed, K.H., Rao, A.R. 1998. A modified Mann-Kendall trend test for auto-correlated data. Journal of Hydrology 204, 182-196

Kaplan, A., Cane, M.A., YKushnir,Y. Clement, A.C., Blumenthal, M.B., Rajagopalan, B. 1998. Analyses of global sea surface temperature 1856–1991, Journal of Geophysical Research 103 (C9), 18,567–18,589.

Kendall, M.G., 1975. Rank Correlation Methods. 4th edition, Charles Griffin, London.

Khedun, C.P., Mishra, A.K., Singh, V.P., Giardino, J.R. 2014. A copula-based precipitation forecasting model: Investigating the interdecadal modulation of ENSO’s impacts on monthly precipitation. Water Resources Research 50, 580–600

Manatsa, D., Chingombea, W., Matarirab, C.H. 2008. The impact of the positive Indian Ocean dipole on Zimbabwe droughts. International Journal of Climatology 28, 2011-2029.

Mann, H.B., 1945. Nonparametric tests against trend. Econometrica 13, 245–259.

McKee, T.B., Doesken, N.J., Kleist, J. 1993. The relationship of drought frequency and duration to time scales. In: Proc. 8th Conf. on Applied Climatology American Meteorological Society Boston, Massachusetts, pp. 179–184.

Mishra, A.K., Desai, V.R. 2005a. Drought Forecasting using Stochastic Models. Stochastic Environmental Research and Risk Assessment 19, 326-339.

Mishra, A. K., Desai, V. R. 2005b. Spatial and temporal drought analysis in the Kansabati River Basin, India, International Journal of River Basin Management 3 (1), 31-41.

Mishra, A.K., Desai, V.R. 2006. Drought forecasting using feed forward recursive neural network. Ecological modeling 198, 127–138.

Mishra, A.K., Singh, V.P. 2010. A review of drought concepts. Journal of Hydrology, 391 (1-2), 202-216.

Mishra, A.K., Özger, M., Singh, V.P. 2009. Trend and persistence of precipitation under climate change scenarios. Hydrological processes 23 (16), 2345-2357.

Mishra, A.K., Singh, V.P., Özger, M. 2010. Seasonal streamflow extremes in Texas River basins: uncertainty, trends and teleconnections. Journal of Geophysical Research-Atmosphere 116, D08108.

Mishra, A.K., Singh, V.P., Özger, M. 2011. Seasonal streamflow extremes in Texas river basins: Uncertainty, trends, and teleconnections. Journal of Geophysical Research 116, D08108.

Miyan, M.A. 2015. Droughts in Asian Least Developd Countries: Vulnerability and sustainability. Weather and Climate Extremes 7, 8-23.

Novotny, E.V., Stefan, H.G. 2007. Stream flow in Minnesota: Indicator of climate change. Journal of Hydrology 334 (3–4), 319-333.

Partal, T., Kahya, E. 2006. Trend analysis in Turkish precipitation data. Hydrological Processes 20, 2011–2026.

Paulo, A.A., Rosa, P.D., Pereira, L.S. 2012. Climate trends and behaviour of drought indices based on precipitation and evapotranspiration in Portugal. Natural Hazards and Earth System Sciences 12, 1481-1491.

Ped, D.A. 1975. On indicators of droughts and wet conditions (in Russian). Proceeding USSR Hydrometeorological Center 156, 19–39.

Raghavan, S.V., Vu, M.T., Liong, S.Y. 2014. Impact of climate change on future stream flow in the Dakbla river basin. Journal of Hydroinformatics 16 (1), 231-244

Raghavan, S.V., Vu, M.T., Liong, S.Y. 2015. Regional climate simulations over Vietnam using the WRF model. Theoretical Applied Climatology. Doi: 10.1007/s00704-015-1557-0

Sen, P.K. 1968. Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association 63 (324), 1379–1389.

Sousa P.M., Trigo, R.M., Aizpurua, P., Nieto, R., Gimeno, L., García-Herrera, R. 2011. Trends and extremes of drought indices throughout the 20th century in the Mediterranean. Natural Hazards and Earth System Sciences 11, 33–51.

Sternberg, T. 2011. Regional drought has a global impact. Nature 472, 169.

Tabari, H., Talaee, H.P. 2011a. Analysis of trends in temperature data in arid and semi-arid regions of Iran. Global and Planetary Change 79 (1–2), 1–10.

Tabari, H., Talaee, H.P. 2011b. Temporal variability of precipitation over Iran: 1966–2005. Journal of Hydrology 396 (3–4), 313–320.

Trenberth, K.E., Dai, A., van der Schrier, G., Jones, P.D., Barichivich, J., Briffa, K.R., Sheffield, J. 2014. Global warming and changes in drought. Nature Climate Change 4, 17-22.

USGS. Global Land Cover Characterization Program. http://edc2.usgs.gov/glcc/euras_int.php (latest accessed date: Feb 2015).

Vicente-Serrano, S.M., Beguería, S., Lorenzo-Lacruz, J., Camarero, J.J., López-Moreno, J.I., Azorín-Molina, C., Revuelto, J., Morán-Tejeda, E., Sánchez-Lorenzo, A. 2012. Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interaction 16, 1–27.

Vu, M.T., Raghavan, S.V., Liong, S.Y. 2014. SWAT use of gridded observations for simulating runoff – a Vietnam river basin study. Hydrology and Earth System Sciences 16, 2801–2811.

Vu, M.T., Raghavan, V.S, Pham, D.M., Liong, S.Y. 2015. Investigating drought over the Central Highland, Vietnam, using regional climate models. Journal of Hydrology 526, 265-273.

Vu, T.H., Ngo, D.T., Phan, V.T., 2014. Evolution of meteorological drought characteristics in Vietnam during the 1961–2007 period. Theoretical and Applied Climatology 118 (3), 367-375.

Xie, P., Yatagai, A., Chen, M., Hayasaka, T., Fukushima, Y., Liu, C., Yang, S., 2007. A Gauge-Based Analysis of Daily Precipitation over East Asia. Journal of Hydrometeorology 8, 607-627.

Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., Kitoh, A. 2012. APHRODITE: Constructing a Long-term Daily Gridded Precipitation Dataset for Asia based on a Dense Network of Rain Gauges. Bulletin of American Meteorological Society 93, 1401–1415.

Zhang, L., Zhou, T. 2015. Drought over Asia: A Review. Journal of Climate 28, 3375-3399.

Zhang, Q., Xu, X.Y., Zhang, Z.X. 2009. Observed changes of drought/wetness episodes in the Pearl River basin, China, using the standardized precipitation index and aridity index. Theoretical and Applied Climatology 98, 89–99.

Downloads

Published

27-06-2016

How to Cite

1.
Vu TM, Mishra A. Spatial and temporal variability of Standardized Precipitation Index over Indochina Peninsula. CIG [Internet]. 2016 Jun. 27 [cited 2024 Apr. 23];42(1):221-32. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/2928

Issue

Section

Articles