Configuración y calibración de un simulador de lluvia portátil para determinar procesos de erosión del suelo a escala de interrill
DOI:
https://doi.org/10.18172/cig.3129Palabras clave:
escorrentía, erosión del suelo, erosividad de la lluvia, energía cinética, simulación de lluviaResumen
Se construyó un simulador de lluvia portátil con el fin de determinar procesos de escorrentía y erosión del suelo a escala de interrill. En este estudio se identifican y discuten los requisitos y las limitaciones de este simulador de lluvia. Para ello se examinan algunos aspectos relacionados con la calibración del simulador tales como la homogeneidad espacial de la lluvia, la intensidad de la lluvia, el tamaño y velocidad de las gotas y la energía cinética de la lluvia. Estos parámetros fueron obtenidos utilizando diferentes metodologías, entre las que cabe destacar un Monitor Láser de Precipitación (Laser Precipitation Monitor). En este trabajo se presentan de forma detallada las características de la calibración. La intensidad de la lluvia obtenida por el simulador fue de 45.4 mm h-1, con una homogeneidad espacial del 84% sobre una parcela con una superficie de 0.64 m2. Debido a que la altura de la caída de las gotas de lluvia fue relativamente baja (2 m), la velocidad final de las gotas (1.87 m s-1), que depende del diámetro de las mismas, fue menor que los valores establecidos para lluvias naturales. Esto también determinó una energía cinética baja (4.6 J·m-2·mm-1), comparada con la de las lluvias naturales de misma intensidad. Estas limitaciones, habituales en los simuladores de lluvia portátiles, constituyeron un mal menor teniendo en cuenta todos los parámetros de lluvia relevantes obtenidos con este simulador. Por otra parte, los experimentos de campo mostraron que la erosividad de la lluvia fue constante y replicable.Descargas
Citas
Arnaéz, J., Lasanta, T., Ruiz-Flaño, P., Ortigosa, L. 2007. Factors affecting runoff and erosion under simulated rainfall in Mediterranean vineyards. Soil & Tillage Research 93 (2), 324-334. DOI: http://doi.org/10.1016/j.still.2006.05.013.
Arnáez, J., Larrea, V., Ortigosa, L. 2004. Surface runoff and soil erosion on unpaved forest roads from rainfall simulation tests in northeastern Spain. Catena 57 (1), 1-14. DOI: http://doi.org/10.1016/j.catena.2003.09.002.
Arnáez, J., Larrea, V. 1995. Erosion Processes and Rates on Road-Sides of Hill-Roads (Iberian System, La Rioja, Spain). Physics and Chemistry of the Earth 20 (3-4), 395-401. DOI: http://doi.org/10.1016/0079-1946(95)00053-4.
Assouline, S. 2009. Drop size distributions and kinetic energy rates in variable intensity rainfall. Water Resources Research 45 (11), W11501. DOI: http://doi.org/10.1029/2009WR007927.
Blanquies, J., Scharff, M., Hallock, B. 2003. The Design and Construction of a Rainfall Simulator. Presented at the International Erosion Control Association (IECA), 34th Annual Conference and Exposition, Las Vegas, Nevada, February 24- 28, 2003. Caltrans Storm Water Program. Office of Water Programs, California State University, Sacramento. PP044.
Brodie, I., Rosewell, C. 2007. Theoretical relationships between rainfall intensity and kinetic energy variants associated with stormwater particle washoff. Journal of Hydrology 340 (1-2), 40-47. DOI: http://doi.org/10.1016/j.jhydrol.2007.03.019.
Butzen, V., Seeger, M., Wirtz, S., Huemann, M., Müller, C., Casper, M., Ries, J.B. 2014. Quantification of Hortonian overland flow generation and soil erosion in a Central European low mountain range using rainfall experiments. Catena 113, 202-212. DOI: http://doi.org/10.1016/j.catena.2013.07.008.
Cerdà, A., Ibánez, S., Calvo, A. 1997. Design and operation of a small portable rainfall simulator for rugged terrain. Soil Technology 11 (2), 163-170. DOI: http://doi.org/10.1016/S0933-3630(96)00135-3
Chaubey, I., Haan, C.T., Grunwald, S., Salisbury, J.M. 1999. Uncertainty in the model parameters due to spatial variability of rainfall. Journal of Hydrology 220 (1-2), 48-61. DOI: http://doi.org/10.1016/S0022-1694(99)00063-3.
Christiansen, J.E. 1942. Irrigation by sprinkling. California Agricultural Experimental Station Bulletin 670, University of California, Berkeley.
De Vente, J., Poesen, J., Verstraeten, G., Govers, G., Vanmaercke, M., Van Rompaey, A., Arabkhedri, M., Boix-Fayos, C. 2013. Predicting soil erosion and sediment yield at regional scales: where do we stand? Earth-Science Reviews 127, 16-29. DOI: http://doi.org/10.1016/j.earscirev.2013.08.014.
Dunkerley, D. 2008. Rain event properties in nature and in rainfall simulation experiments: a comparative review with recommendations for increasingly systematic study and reporting. Hydrological Processes 22 (22), 4415-4435. DOI: http://doi.org/10.1002/hyp.7045.
Edwards, W.M., Owens, L.B. 1991. Large storm effects on total soil erosion. Journal of Soil and Water Conservation 46 (1), 75-78.
Foltz, R.B., Copeland, N.S., Elliot, W.J. 2009. Reopening abandoned forest roads in northern Idaho, USA: Quantification of runoff, sediment concentration, infiltration, and interrill erosion parameters. Journal of Environmental Management 90, 2542-2550. DOI: http://doi.org/10.1016/j.jenvman.2009.01.014.
Fornis, R.L., Vermeulen, H.R., Nieuwenhuis, J.D. 2005. Kinetic energy-rainfall intensity relationship for Central Cebu, Philippines for soil erosion studies. Journal of Hydrology 300 (1-4), 20-32. DOI: http://doi.org/10.1016/j.jhydrol.2004.04.027.
Fransen, P.J.B., Phillips, C.J., Fahey, B.D. 2001. Forest Road Erosion in New Zealand: Overview. Earth Surface Processes and Landforms 26 (2), 165-174. DOI: http://doi.org/10.1002/1096-9837(200102)26:2<165::AID-ESP170>3.0.CO;2-#.
Gunn, R., Kinzer, G.D. 1949. The terminal velocity of fall for water droplets in stagnant air. Journal of Meteorology 6, 243-248. DOI: http://doi.org/10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2.
Iserloh, T., Ries, J.B., Arnáez, J., Boix Fayos, C., Butzen, V., Cerdà, A., Echeverría, M.T., Fernández-Gálvez, J., Fister, W., Geißler, C., Gómez, J.A., Gómez-Macpherson, H., Kuhn, N.J., Lázaro, R., León, F.J., Martínez-Mena, M., Martínez-Murillo, J.F., Marzen, M., Mingorance, M.D., Ortigosa, L., Peters, P., Regüés, D., Ruiz-Sinoga, J.D., Scholten, T., Seeger, M., Solé-Benet, A., Wengel, R., Wirtz, S. 2013. European small portable rainfall simulators: a comparison of rainfall characteristics. Catena 110, 100-112. DOI: http://doi.org/10.1016/j.catena.2013.05.013.
Iserloh, T., Fister, W., Seeger, M., Willger, H., Ries, J.B. 2012. A small portable rainfall simulator for reproducible experiments on soil erosion. Soil & Tillage Research 124, 131-137. DOI: http://doi.org/10.1016/j.still.2012.05.016.
MacDonald, L.H., Sampson, R.W., Anderson, D.M. 2001. Runoff and Road Erosion at the Plot and Road Segment Scales, St. John, US Virgin Islands. Earth Surface Processes and Landforms 26 (2), 251-272. DOI: http://doi.org/10.1002/1096-9837(200103)26:3<251::AID-ESP173>3.0.CO;2-X.
Maetens, W., Vanmaercke, M., Poesen, J., Jankauskas, B., Jankauskiene, G., Ionita, I. 2012. Effects of land use on annual runoff and soil loss in Europe and the Mediterranean. A meta-analysis of plot data. Progress in Physical Geography 36 (5), 599-653. DOI: http://doi.org/10.1177/0309133312451303.
Marshall, J.S., Palmer, W.McK. 1948. The distribution of raindrops with size. Journal of Meteorology 5, 165-166. DOI: http://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.
Morgan, R.P.C. 2009. Soil erosion and Conservation. 3rd ed. Wiley-Blackwell, Oxford, 320 pp.
Morin, E., Goodrich, D.C., Maddox, R.A., Gao, X., Gupta, H.V., Sorooshian, S. 2006. Spatial patterns in thunderstorm rainfall events and their coupling with watershed hydrological response. Advances in Water Resources 29 (6), 843-860. DOI: http://doi.org/10.1016/j.advwatres.2005.07.014.
Petan, S., Rusjan, S., Vidmar, A., Mikoš, M. 2010. The rainfall kinetic energy–intensity relationship for rainfall erosivity estimation in the mediterranean part of Slovenia. Journal of Hydrology 391 (3-4), 314-321. DOI: http://doi.org/10.1016/j.jhydrol.2010.07.031.
Ries, J.B., Seeger, M., Iserloh, T., Wistorf, S., Fister, W. 2009. Calibration of simulated rainfall characteristics for the study of soil erosion on agricultural land. Soil & Tillage Research 106 (1), 109-116. DOI: http://doi.org/10.1016/j.still.2009.07.005.
Rodrigo Comino, J., Iserloh, T., Lassu, T., Cerdà, A., Keestra, S.D., Prosdocimi, M., Brings, C., Marzen, M., Ramos, M.C., Senciales, J.M., Ruiz Sinoga, J.D., Seeger, M., Ries, J.B. 2016. Quantitative comparison of initial soil erosion processes and runoff generation in Spanish and German vineyards. Science of The Total Environment 565, 1165-1174. DOI: http://doi.org/10.1016/j.scitotenv.2016.05.163.
Salles, C., Poesen, J., Govers, G. 2001. A comparison of rain erosivity parameters for predicting soil detachment on interrills. In Sustaining the Global Farm. Selected papers from the 10th International Soil Conservation Organization Meeting held May 24-29, 1999 at Purdue University and the USDA-ARS National Soil Erosion Research Laboratory. D.E. Stott; R.H. Mohtar; G.C. Steinhardt (ed.), National Soil Erosion Laboratory, West Lafayette, Indiana, pp. 834-837.
Salles, C., Poesen, J. 2000. Rain properties controlling soil splash detachment. Hydrological Processes 14(2), 271-282. DOI: http://doi.org/10.1002/(SICI)1099-1085(20000215)14:2<271::AID-HYP925>3.0.CO;2-J.
Sanchez-Moreno, J.F., Mannaerts, C.M., Jetten, V., Löffler-Mang, M. 2012. Rainfall kinetic energy–intensity and rainfall momentum–intensity relationships for Cape Verde. Journal of Hydrology 454-455, 131-140. DOI: http://doi.org/10.1016/j.jhydrol.2012.06.007.
Usón, A., Ramos, M.C. 2001. An improved rainfall erosivity index obtained from experimental interrill soil losses in soils with a Mediterranean climate. Catena 43 (4), 293-305. DOI: http://doi.org/10.1016/S0341-8162(00)00150-8.
Van Dijk, A.I.J.M., Bruijnzeel, L.A., Roswell, C.J. 2002: Rainfall intensity – kinetic energy relationships: a critical literature appraisal. Journal of Hydrology 261 (1-4), 1-23. DOI: http://doi.org/10.1016/S0022-1694(02)00020-3.
Zemke, J.J. 2016. Simulation of runoff and erosion on forest roads using a small scale rainfall simulator. Hydrology 2016, 3 (3), 25. Special Issue “Rainfall Simulators as a tool in Soil Science, Geomorphology and Hydrology research and teaching”. DOI: http://doi.org/10.3390/hydrology3030025.
Zemke, J.J., König, D. 2016. Abflussbildung und Bodenerosion auf Forstwegen. Geographische Rundschau 1/2016, 46-53.
Zemke, J.J. 2015. Simulation und Modellierung von Oberflächenabfluss und Bodenabtrag auf Wirtschaftswegen in Bewaldeten Einzugsgebieten. Ph.D. Thesis, University of Koblenz-Landau, Koblenz, Germany, 11 November 2014.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
El autor o autora conserva todos los derechos sobre su artículo y cede a la revista el derecho de la primera publicación, no siendo necesaria la autorización de la revista para su difusión una vez publicado. Una vez publicada la versión del editor el autor está obligado a hacer referencia a ella en las versiones archivadas en los repositorios personales o institucionales.
El artículo se publicará con una licencia Creative Commons de Atribución, que permite a terceros utilizar lo publicado siempre que se mencione la autoría del trabajo y la primera publicación en esta revista.
Se recomienda a los autores/as el archivo de la versión de editor en repositorios institucionales.