Revisando el comportamiento de los glaciares tropicales andinos durante la inversión fría Antártica

Autores/as

  • V. Jomelli CNRS University Paris 1 Pantheon Sorbonne
  • L. Martin Centre de Recherches Pétrographiques et Géochimiques, CRPG, UMR 7358, CNRS, Université de Lorraine
  • P. H. Blard Centre de Recherches Pétrographiques et Géochimiques, CRPG, UMR 7358, CNRS, Université de Lorraine
  • V. Favier Université Grenoble, Alpes
  • M. Vuillé Department of Atmospheric and Environmental Sciences, University at Albany
  • J. L. Ceballos Institute for Hydrology, Meteorology and Environmental Studies (IDEAM), Bogota

DOI:

https://doi.org/10.18172/cig.3201

Palabras clave:

Glaciares tropicales, ACR, Younger Dryas, nucleidos cosmogenicos

Resumen

La sensibilidad de los glaciares tropicales a las condiciones de temperatura fría durante la Inversión Fría Antártica (ACR, por sus siglas en inglés, 14.5-12.9 miles de años AP aprox.) ha sido ampliamente discutida. En 2014, un artículo científico revelaba una respuesta de los glaciares tropicales a la tendencia climática de la ARC (Jomelli et al., 2014); sin embargo, en 2015 nuevas producciones científicas cuestionaron la relevancia de tal conclusión. A partir de las nuevas producciónes se procedió a re-examinar las conclusiones previas, recalculando los resultados basados en cronologías 226 10Be y 14 3He. Para esta revisión, se seleccionaron 53 morrenas de 25 glaciares localizados en Colombia, Perú y Bolivia, entre los analizados por Jomelli et al. (2014) y se procedió a realizar dos cálculos diferentes. En primer lugar, se tuvo en cuenta la morrena más antigua y su incertidumbre para cada glaciar, de acuerdo con cinco períodos distintos abarcando ACR y Younger Dryas (YD): pre-ACR, ACR, ACR-YD, YD y post-YD respectivamente. Los resultados revelaron el predominio de señales pre-ACR, ACR en el 60% de los casos. Posteriormente, se contaron el número de morrenas por glaciar, teniendo en cuenta los diferentes grupos. 21 morrenas (40%) de los glaciares seleccionados corresponden con las cronozonas pre-ACR y ACR mientras que solo tres morrenas (5%) fueron datadas en los grupos YD y YD-Holoceno. Estos resultados sugieren que las morrenas son un proxy muy bueno para analizar la señal de ACR en los Andes Tropicales.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Balco, G., Stone, J.O., Lifton, N.A., Dunai, T.J. 2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology, 3, 174-195. DOI: http://doi.org/10.1016/j.quageo.2007.12.001.

Blard, P.H., Sylvestre, F., Tripati, A.K., Claude, C., Coudrain, A., Condom, T., Seidel, J.L., Vimeux, F., Moreau, C., Dumoulin, J.P., Lavé, J. 2011. Lake highstands on the Altiplano (Tropical Andes) contemporaneous with Heinrich 1 and the Younger Dryas: new insights from 14C, U-Th dating and δ18O of carbonates. Quaternary Science Reviews, 30, 3973-3989. DOI: http://doi.org/10.1016/j.quascirev.2011.11.001.

Blard, P.H., Braucher, R., Lavé, J., Bourlès, D. 2013a. Cosmogenic 10Be production rate calibrated against 3He in the high Tropical Andes (3800-4900 m, 20-22°S). Earth and Planetary Science Letters 382, 140-149. DOI: http://doi.org/10.1016/j.epsl.2013.09.010.

Blard, P.H., Lavé, J., Sylvestre, F., Placzek, C.J., Claude, C., Galy, V., Condom, T., Tibari, B. 2013b. Cosmogenic 3He production rate in the high tropical Andes (3800 m, 20°S): Implications for the local Last Glacial Maximum. Earth and Planetary Science Letters 377-378, 260-275. DOI: http://doi.org/10.1016/j.epsl.2013.07.006.

Blard, P.H., Balco, G. Burnard, P.G., Farley, K.A., Fenton, C.R., Friedrich, R., Jull, A.J.T., Niedermann, S. Pik, R., Schaefer, J.M., Scott, E.M., Shuster, D.L., Stuart, F.M., Stute, M., Tibari, B.,Winckler, G., Zimmermann L. 2015. An inter-laboratory comparison of cosmogenic 3He and radiogenic 4He in the CRONUS-P pyroxene standard. Quaternary Geochronology, 26, 11-19.

Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N., Nishiizumi, K., Phillips, F., Schaefer, J., Stone, J. 2015. Geological calibration of spallation production rates in the CRONUS-Earth project. Quaternary Geochronology 31, 188-198. DOI: http://doi.org/10.1016/j.quageo.2015.01.009.

Bromley, G.R.M., Schaefer, J.M., Winckler, G., Hall, B.L., Todd, C.E., Rademaker, K.M. 2009. Relative timing of last glacial maximum and late-glacial events in the central tropical Andes. Quaternary Science Reviews 28(23-24), 2514-2526. DOI: http://doi.org/10.1016/j.quascirev.2009.05.012.

Bromley, G.R.M., Hall, B.L., 2011. Glacier fluctuations in the southern Peruvian Andes during the late-glacial period, constrained with cosmogenic 3He. Journal of Quaternary Science 26, 37-43. DOI: http://doi.org/10.1002/jqs.1424.

Carcaillet, J., Angel, I., Carrillo, E., Audemard, F. A. Beck, C. 2013. Timing of the last deglaciation in the Sierra Nevada of the Merida Andes, Venezuela. Quaternary Research 80, 482-494. DOI: http://doi.org/10.1016/j.yqres.2013.08.001.

Cheng, H., Sinha, A., Cruz, F.W., Wang, X., Edwards, R.L., d’Horta, F.M., Ribas, C.C., Vuille, M., Stott, L.D., Auler, A.S. 2013: Climate change patterns in Amazonia and biodiversity. Nature Communications, 4, 1411. DOI: http://doi.org/10.1038/ncomms2415.

Delunel, R., Blard, P.H., Martin, L.C.P., Nomade, S., Schlunegger, F., 2016. Long term low latitude and high elevation cosmogenic 3He production rate inferred from a 107 ka-old lava flow in northern Chile; 22°S 3400m a.s.l. Geochimica Cosmochimica Acta 184, 71-87. DOI: http://doi.org/10.1016/j.gca.2016.04.023.

Dunai, T. 2001. Influence of secular variation of the geomagnetic field on production rates of in situ produced cosmogenic nuclides. Earth and Planetary Science Letters 193, 197-212. DOI: http://doi.org/10.1016/S0012-821X(01)00503-9.

Farber, D.L., Hancock, G.S., Finkel, R.C., Rodbell, D.T. 2005. The age and extent of tropical alpine glaciation in the Cordillera Blanca, Peru. Journal of Quaternary Science 20, 759-776. DOI: http://doi.org/10.1002/jqs.994.

Glasser, N.F., Clemmens, S., Schnabel, C., Fenton, C.R., McHargue, L. 2009. Tropical glacier fluctuations in the Cordillera Blanca, Peru between 12.5 and 7.6 ka from cosmogenic 10Be dating. Quaternary Science Reviews 28, 3448-3458. DOI: http://doi.org/10.1016/j.quascirev.2009.10.006.

Hall, S.R., Farber, D.L., Ramage, J.M., Rodbell, D.T., Finkel, R.C., Smith, J.A., Mark, B.G., Kassel, C. 2009. Geochronology of Quaternary glaciations from the tropical Cordillera Huayhuash, Peru. Quaternary Science Reviews 28, 2991-3009. DOI: http://doi.org/10.1016/j.quascirev.2009.08.004.

Jomelli, V., Khodri, M., Favier, V., Brunstein, D., Ledru, M.P., Wagnon, P., Blard, P.H., Sicart, J.E., Braucher, R., Grancher, D., Bourlès, D.L., Braconnot, P., Vuille, M. 2011. Irregular tropical glacier retreat over the Holocene. Nature 474, 196-199, DOI: http://doi.org/10.1038/nature10150.

Jomelli, V., Favier, V., Vuille, M., Braucher, R., Blard, P.H., Khodri, M., Colose, C., Brunstein, D., Bourlès, D., Leanni, L., Rinterknecht, V., Grancher, D., Francou, B., He, F., Ceballos, J.L., Francesca, H., Liu, Z., Otto-Bliesner, B. 2014. A major advance of tropical Andean glaciers during the Antarctic Cold Reaversal. Nature 513, 224-228. DOI: http://doi.org/10.1038/nature13546.

Kaser, G. 2001. Glacier-climate interaction at low latitudes. Journal of Glaciology 47, 195-204. DOI: http://doi.org/10.3189/172756501781832296.

Kelly, M. A., Lowell, T. V., Applegate, P.J., Phillips, F.M., Schaefer, J.M., Smith, C. A., Kim, H., Leonard, K.C., Hudson, A.M. 2015. A locally calibrated, late glacial 10Be production rate from a low-latitude, high-altitude site in the Peruvian Andes. Quaternary Geochronology 26, 70-85. DOI: http://doi.org/10.1016/j.quageo.2013.10.007.

Lal, D. 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104, 424-439. DOI: http://doi.org/10.1016/0012-821X(91)90220-C.

Licciardi, J.M., Schaefer, J.M., Taggart, J.R., Lund, D.C. 2009. Holocene glacier fluctuations in the Peruvian Andes indicate northern climate linkages. Science 325, 1677-1679. DOI: http://doi.org/10.1126/science.1175010.

Lifton, N., Sato, T., Dunai, T.J., 2014. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth and Planetary Science Letters 386, 149-160. DOI: http://doi.org/10.1016/j.epsl.2013.10.052.

Martin, L., Blard, P.H., Lave, J., Braucher, R., Lupker, M., Condom, T., Charreau, J., Mariotti, V., Bourlès, D., Arnold, M., G. Keddadouche, K.A., Davy, E. 2015. In situ cosmogenic 10Be production rate in the High Tropical Andes. Quaternary Geochronology 30, 54-68. DOI: http://doi.org/10.1016/j.quageo.2015.06.012.

Mosblech, N.A.S. Bush, M.B., Gosling, W., L., Hodell, D., Thomas, L., van Calsteren, P., Correa-Metrio, A., Valencia, B.G., Curtis, J., van Woesik, R. 2012. North Atlantic forcing of Amazonian precipitation during the last ice age. Nature Geoscience 5, 817-820. DOI: http://doi.org/10.1038/ngeo1588.

Muscheler, R., Beer, J., Kubik, P.W., Synal, H. 2005. Geomagnetic field intensity during the last 60,000 years based on 10Be and 36Cl from the Summit ice cores and 14C. Quaternary Science Reviews 24, 1849-1860. DOI: http://doi.org/10.1016/j.quascirev.2005.01.012.

Nishiizumi, K, Imamura, M., Caffee, M.W., Southon, J.R., Finkel, R.C., Mc Aninch, J. 2007. Absolute calibration of 10Be AMS standards. Nuclear Instruments and Methods in Physics Research B 258: 403-413.

Pedro, J.B., Bostock, H. C., Bitz, C M., He, F., Vandergoes, M., J., Steig, E. J., Chase, B. M. Krause, C. E., Rasmussen, S. O., Bradley, R. Cortese, G. 2016. The spatial extent and dynamics of the Antarctic Cold Reversal. Nature Geoscience 9, 51-55. DOI: http://doi.org/10.1038/ngeo2580.

Placzek, C., Quade, J., Patchett, P.J. 2006. Geochronology and stratigraphy of late Pleistocene lake cycles on the southern Bolivian Altiplano: implications for causes of tropical climate change. Geological Society of America Bulletin 118, 515-532.

Putnam, A.E., Denton, G.H., Schaefer, J.M., Barrell, D.J.A., Andersen, B.G., Finkel, R., Schwartz, R., Dughty, A.M., Kaplan, M., Schlüchter, C. 2010. Glacier advance in southern middle-latitudes during the Antarctic Cold Reversal. Nature Geoscience 3, 700-704. DOI: http://doi.org/10.1038/ngeo962.

Rabatel, A., Francou, B., Soruco, A., Gomez, J., Cáceres, B., Ceballos, J.L., Basantes, R., Vuille, M., Sicart, J.E., Huggel, C., Scheel, M., Lejeune, Y., Arnaud, Y., Collet, M., Condom, T., Consoli, G., Favier, V., Jomelli, V., Galarraga, R., Ginot, P., Maisincho, L., Mendoza, J., Ménégoz, M., Ramirez, E., Ribstein, P., Suarez, W., Villacis, W., Wagnon, P. 2013. Current state of glaciers in the tropical Andes. A multi century perspective on glacier evolution and climate change. The Cryosphere, 7, 81-102. DOI: http://doi.org/10.5195/tc-7-81-2013.

Rodbell, D. T., Smith, J. A., Mark, B. G. 2009. Glaciation in the Andes during the lateglacial and Holocene. Quatary Science Reviews 28, 2165-2212. DOI: http://doi.org/10.1016/j.quascirev.2009.03.012.

Schefuss, E., Kuhlmann, H., Mollenhauer, G., Prange, M., Pätzold, J. 2011. Forcing of wet phases in southeast Africa over the past 17,000 years. Nature 480, 509-512. DOI: http://doi.org/10.1038/nature10685.

Shakun J.D., Clark, P.U., He, F., Lifton, N.A., Liu, Z. Otto-Bliesne, B.L. 2015 Regional and global forcing of glacier retreat during the last deglaciation. Nature Communications 6, 8059. DOI: http://doi.org/10.1038/ncomms9059.

Sylvestre, F., Servant-Vildary, S., Servant, M., Causse, C., Fournier, M., Ybert, J.P. 1999. Lake-level chronology on the Southern Bolivian Altiplano (18-23°S) during Late-Glacial Time and the Early Holocene. Quaternary Research 51, 54-66.

Smith, J.A., Seltzer, G.O., Farber, D.L., Rodbell, D.T. , Finkel, R.C. 2005. Early local last glacial maximum in the tropical Andes. Science 308, 678-681. DOI: http://doi.org/10.1126/science.1107075.

Smith J.A., Rodbell, D.T. 2010. Cross-cutting moraines reveal evidence for North Atlantic influence on glaciers in the tropical Andes. Journal of Quaternary Science 25, 243-248. DOI: http://doi.org/10.1002/jqs.1393.

Smith, C.A., Lowell, T.V., Owen, L.A., Caffee, M.W. 2011. Late Quaternary glacial chronology on Nevado Illimani, Bolivia, and the implications for paleoclimatic reconstructions across the Andes. Quaternary Research 75, 1-10. DOI: http://doi.org/10.1016/yqres.2010.07.001.

Stone, J.O. 2000. Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105, 23753. DOI: http://doi.org/10.1029/2000JB900181.

Strelin, J.A., Kaplan, M.R., Vandergoes, M.J., Denton, G.H., Schaefer, J.M. 2014. Holocene glacier history of the Lago Argentino basin, Southern Patagonian Icefield. Quaternary Science Reviews 101, 124-145. DOI: http://doi.org/10.1016/j.quascirev.2014.06.026.

Thompson, L., Mosley-Thompson, E., Henderson, K. 2000. Ice-core palaeoclimate records in tropical South America since the last glacial maximum. Journal of Quaternary Science 15, 377-394. DOI: http://doi.org/10.1002/1099-1417(200005)15:4<377::AID-JQS542>3.0.CO;2-L.

Thompson, L.G., Mosley-Thompson, E., Brecher, H., Davis, M., Leon, B., Les, D., Lin, P.N., Mashiotta, T., Mountain, K.,2006. Abrupt tropical climate change: past and present. PNAS 103, 10536-10543.

Uppala, S.M., Kållberg, P.W., Simmons, A.J., Andrae, U., Da Costa Bechtold, V., Fiorino, M., Gibson, J.K., Haseler, J., Hernandez, A., Kelly, G.A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R.P., Andersson, E., Arpe, K., Balmaseda, M.A., Beljaars, A.C.M., Van de Berg, L., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B.J., Isaksen, L., Janssen, P.A.E.M., Jenne, R., Mcnally, A.P., Mahfouf, J.F., Morcrett, J.J., Rayner, N.A., Saunders, R.W., Simon, P., Sterl, A., Trenberth, K.E., Untch, A., Vasiljevic, D., Viterbo, P., Woollen, J. 2005. The Era-40 re-analysis. Quarterly Journal of the Royal Meteorological Society 131. DOI: http://doi.org/10.1256/qj.04.176.

Vázquez-Selem, L., Lachniet, M. 2017. The deglaciation of the mountains of Mexico and Central America. Cuadernos de Investigación Geográfica 43(2).

Zech, R., Kull, C., Kubik, P.W., Veit, H. 2007. LGM and Late Glacial glacier advances in the Cordillera Real and Cochabamba (Bolivia) deduced from 10Be surface exposure dating. Climate of the Past 3, 623-635. DOI: http://doi.org/10.5194/cp-3-623-2007.

Zech, J., Zech, R., Kubik, P.W., Veit, H. 2009. Glacier and climate reconstruction at Tres Lagunas, NW Argentina, based on 10Be surface exposure dating and lake sediment analyses. Palaeogeography, Palaeoclimatology, Palaeoecology 284, 180-190. DOI: http://doi.org/10.1016/j.palaeo.2009.09.023.

Descargas

Publicado

2017-09-15

Cómo citar

1.
Jomelli V, Martin L, Blard PH, Favier V, Vuillé M, Ceballos JL. Revisando el comportamiento de los glaciares tropicales andinos durante la inversión fría Antártica. CIG [Internet]. 15 de septiembre de 2017 [citado 12 de marzo de 2025];43(2):629-48. Disponible en: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/3201

Número

Sección

Artículos