Modelización del cambio de la cobertura del suelo en los bosques de Hircania del norte de Irán: una perspectiva desde el análisis de la transformación y los patrones del paisaje
DOI:
https://doi.org/10.18172/cig.3279Palabras clave:
cambios de usos del suelo, índices de paisaje, análisis de transformación de paisaje, bosques hircanios, IránResumen
El objetivo principal de este trabajo es analizar los patrones espaciotemporales de cambios del uso del suelo (1984-2010) y generar escenarios para el horizonte temporal 2030 en la cuenca del río Neka, en el norte de Irán. Dicha cuenca alberga bosques hircanios, de gran riqueza ecológica y que sólo se encuentran en algunos sectores del entorno del mar Caspio. Para ello se han utilizado mapas muy detallados de usos del suelo para los periodos 1984 y 2010. Los resultados evidencian procesos moderados de deforestación, fundamentalmente debidos a la expansión de zonas agrícolas y urbanas. Además los resultados indican una evolución hacia bosques más fragmentados y con una pérdida de conectividad. La metodología para simular cambios de usos del suelo fue capaz de reproducir adecuadamente (con un acierto del 96.4%) los usos del suelo simulados para el año 2010. Los escenarios para 2030 muestran una continuidad en los cambios observados durante el periodo 1984-2010, apareciendo nuevos cultivos y zonas urbanas dentro de las zonas actualmente ocupadas por bosques. Si bien la deforestación del bosque hircanio es moderada y ocupa un pequeño porcentaje de la superficie total, representa una afección evidente a los ecosistemas de la región y puede tener impactos asociados en la producción de escorrentía, recarga de acuíferos, explotaciones forestales y procesos erosivos. Así, la información generada puede resultar una herramienta de utilidad para los gestores del territorio y la gestión de los bosques hircanios en la cuenca del río Neka.Descargas
Citas
Abdullah, S.A., Nakagoshi, N. 2006. Changes in landscape spatial pattern in the highly developing state of Selangor, peninsular Malaysia. Landscape and Urban Planing 77, 263-275. https://doi.org/10.1016/j.landurbplan.2005.03.003.
Al-sharif, A.A., Pradhan, P. 2014. Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS. Arabian Journal of Geosciences 7 (10), 4291-4301. https://doi.org/doi:10.1007/s12517-013-1119-7.
Antwi, E., Krawczynski, R., Wiegleb, G. 2008. Detecting the effect of disturbance on habitat diversity and land cover change in a post-mining area using GIS. Landscape and Urban Planning 87, 22-32. https://doi.org/10.1016/j.landurbplan.2008.03.009.
Bagheri, R., Shataee, S. 2010. Modeling forest areas decreases, using logistic regression (case study: Chehl-Chay catchment, Golestan Province). Iranian Journal of Forest 2 (3), 243-252. http://www.sid.ir/en/ViewPaper.asp?ID=181569&varStr=6;BAGHERI%20REZA,SHATAEI%20JOUYBARI%20SH.;IRANIAN%20JOURNAL%20OF%20FOREST;FALL%202010;2;3;243;252.
Bogaert, J., Ceulemans, R., Eysenrode, D.S. 2004. Decision tree algorithm for detection of spatial processes in landscape transformation. Environmental Management 33 (1), 62-73. https://doi.org/10.1007/s00267-003-0027-0.
Boentje, J., Blinnikov, M. 2007. Post-Soviet forest fragmentation and loss in the Green Belt around Moscow, Russia (1991-2001): a remote sensing perspective. Landscape and Urban Planning 82, 208-221. https://doi.org/10.1016/j.landurbplan.2007.02.009.
Camacho Olmedo, M.T., Pontius Jr, R.J., Paegelow, M., Mas, J.F. 2015. Comparison of simulation models in terms of quantity and allocation of land change. Environmental Modelling & Software 69, 214-221. http://doi.org/10.1016/j.envsoft.2015.03.003.
Eastman, J.R. 2012. Idrisi Selva Manual: Idrisi Production Source Code 1987-2012, Clark University, 322 pp. http://uhulag.mendelu.cz/files/pagesdata/eng/gis/idrisi_selva_tutorial.pdf.
Eraso, N.R., Armenteras-Pascual, D., Alumbreros, J.R. 2013. Land use and land cover change in the Colombian Andes: dynamics and future scenarios. Journal of Land Use Science 8 (2), 154-174. http://doi.org/10.1080/1747423X.2011.650228.
Fagiewicz, K. 2014. Spatial processes of landscape transformation in mining areas (case study of opencast lignite mines in Morzyslaw, Nieslusz, Goslawice). Polish Journal of Environmental Studies 23, 1123-1136. http://www.pjoes.com/pdf/23.4/Pol.J.Environ.Stud.Vol.23.No.4.1123-1136.pdf.
García, A.S., Sawakuchi, H.O., Ferreira, M.E., Ballester, M.V.R. 2017. Landscape changes in a neotropical forest-savanna ecotone zone in central Brazil: The role of protected areas in the maintenance of native vegetation. Journal of Environmental Management 187, 16-23. https://doi.org/10.1016/j.jenvman.2016.11.010.
García-Ruiz, J.M., Regüés, D., Alvera, B., Lana-Renault, N., Serrano-Muela, P., Nadal-Romero, E., Navas, A., Latron, J., Martí-Bono, C., Arnáez, J. 2008. Flood generation and sediment transport in experimental catchments affected by land use changes in the central Pyrenees. Journal of Hydrology 356 (1-2), 245-260. https://doi.org/10.1016/j.jhydrol.2008.04.013.
Ghanbarpour, M.R., Mohseni Saravi, H., Salimi, S. 2014. Floodplain Inundation Analysis Combined with Contingent Valuation: Implications for Sustainable Flood Risk Management. Water Resources Management 28 (9), 2491-2505. https://doi.org/10.1007/s11269-014-0622-2.
Gómez, C. White, J. C. Wulder, M. A. 2011. Characterizing the state and processes of change in a dynamic forest environment using hierarchical spatio-temporal segmentation. Science of the total environment 115 (7), 1665-1679. https://doi.org/doi:10.1016/j.rse.2011.02.025.
Joorabian Shooshtari, S, Gholamalifard, M. 2015. Scenario-based land cover change modeling and its implications for landscape pattern analysis in the Neka Watershed, Iran. Remote Sensing Applications: Society and Environment 1, 1-19. https://doi.org/10.1016/j.rsase.2015.05.001.
Joorabian Shooshtari, S, Hosseini, S.M., Esmaili-Sari, A., Gholamalifard, M. 2012. Monitoring land cover change, degradation, and restoration of the Hyrcanian forests in northern Iran (1977-2010). International Journal of Environmental Sciences 3 (3), 1038-1056. http://doi.org/10.6088/ijes.2012030133012.
Kamyab, H.R., Salman Mahini, A.R. 2014. Tempo-spatial patterns of landscape changes and urban development (Case study: Gorgan). RS & GIS for Natural Resources 5 (2), 15-24 (In Persian). http://en.journals.sid.ir/ViewPaper.aspx?ID=301572.
Kelarestaghi, A., Jafarian Jeloudar, Z. 2011. Land use/cover change and driving force analyses in parts of northern Iran using RS and GIS techniques. Arabian Journal of Geosciences 4 (3), 401-411. http://doi.org/10.1007/s12517-009-0078-5.
Khoi, D.D., Murayama, Y. 2010. Forecasting Areas Vulnerable to Forest Conversion in the Tam Dao National Park Region, Vietnam. Remote Sensing 2 (5), 1249-1272. https://doi.org/10.3390/rs2051249.
Kim, O.S. 2010. An Assessment of Deforestation Models for Reducing Emissions from Deforestation and Forest Degradation (REDD). Transactions in GIS 14 (5), 631-654. https://doi.org/10.1111/j.1467-9671.2010.01227.x.
Lausch, A., Herzog, F. 2002. Applicability of landscape metrics for the monitoring of landscape change: issues of scale, resolution and interpretability. Ecological Indicators 2, 3-15. https://doi.org/10.1016/S1470-160X(02)00053-5.
Lee, S.W., Hwang, S.J., Lee, S.B., Hwang, H.S., Sung, H.C. 2009. Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics. Landscape and Urban Planning 92, 80-89. https://doi.org/10.1016/j.landurbplan.2009.02.008.
Lin, L., Sills, E., Cheshire, H. 2014. Targeting areas for Reducing Emissions from Deforestation and forest Degradation (REDD+) projects in Tanzania. Global Environmental Change 24, 277-286. https://doi.org/10.1016/j.gloenvcha.2013.12.003.
Lin, Y.P., Hong, N.M., Wu, P.J., Wu, C.F., Verburg, P.H. 2007. Impacts of land use change scenarios on hydrology and land use patterns in the Wu-Tu watershed in Northern Taiwan. Landscape and Urban Planning 80, 111-126. https://doi.org/10.1016/j.landurbplan.2006.06.007.
Mas, J.F., Kolb, M., Paegelow, M., Camacho Olmedo, M.T. 2014. Inductive pattern-based land use/cover change models: A comparison of four software packages. Environmental Modelling & Software 51, 94-111. http://doi.org/10.1016/j.envsoft.2013.09.010.
McGarigal, K., Cushman, S.A., Neel, M.C., Ene, E. 2002. FRAGSTATS v3: Spatial Pattern Analysis Program for Categorical Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst., Available at the following website: http:// www.umass.edu/landeco/research/fragstats/fragstats.html.
McGarigal, K., Marks, B.J. 1995. FRAGSTAT: Spatial Pattern Analysis Program for Quantify Landscape Structure. Gen. Tech. report. PNW-GTR-351; Pacific Northwest Research Station, USDA-Forest Service, Portland. http://andrewsforest.oregonstate.edu/pubs/pdf/pub1538.pdf.
Midha, N., Mathur, P.K. 2010. Assessment of Forest Fragmentation in the Conservation Priority Dudhwa Landscape, India using FRAGSTATS Computed Class Level Metrics. Journal of the Indian Society of Remote Sensing 38, 487-500. https://doi.org/10.1007/s12524-010-0034-6.
Mohammadi, S.A., Nazariha, M., Mehrdadi, N. 2014. Flood damage estimate (quantity), using HEC-FDA model. Case study: the Neka river. Procedia Engineering 70, 1173-1182. https://doi.org/10.1016/j.proeng.2014.02.130.
Moshtagh Kahnamuii, MH, Rasaneh, Y. 1990. The Preliminary comprehensive plan of Caspian forests (Vol. 1: Summary). Technical forestry office, The ministry of Jahad-e-Sazandegi, Tehran, Iran. (In Persian).
Mostajeran, F., Yousefzadeh, H., Davitashvili, N., Kozlowski, G., Akbarinia, M. 2016. Phylogenetic relationships of Pterocarya (Juglandaceae) with an emphasis on the taxonomic status of Iranian populations using ITS and trnH-psbA sequence data. Plant Biosystems, 1-10. http://doi.org/10.1080/11263504.2016.1219416.
Munsi, M., Areendran, G., Loshi, P.K. 2012. Modeling spatio-temporal change patterns of forest cover: a case study from the Himalayan foothills (India). Regional Environmental Change 12 (3), 619-632. http://doi.org/10.1007/s10113-011-0272-3.
Munsi, M., Areendran, G., Ghosh, A., Joshi, P.K. 2010. Landscape Characterisation of the Forests of Himalayan Foothills. Journal of the Indian Society of Remote Sensing 38, 441-452. https://doi.org/10.1007/s12524-010-0046-2.
Paudel, S., Yuan, F. 2012. Assessing land scape change sand dynamics using patch analysis and GIS modeling. International Journal of Applied Earth Observation and Geoinformation 16, 66-76. https://doi.org/doi:10.1016/j.jag.2011.12.003.
Pérez-Vega, A., Mas, J., Ligmann-Zielinska, A. 2012. Comparing two approaches to land use/cover change modeling and their implications for the assessment of biodiversity loss in a deciduous tropical forest. Environmental Modelling & Software 29 (1), 11-23. https://doi.org/10.1016/j.envsoft.2011.09.011.
Plexida, S.G., Sfougaris, A.I., Ispikoudis, I.P., Papanastasis, V.P. 2014. Selecting landscape metrics as indicators of spatial heterogeneity—Acomparison among Greek landscapes. International Journal of Applied Earth Observation and Geoinformation 26, 26-35. https://doi.org/10.1016/j.jag.2013.05.001.
Pontius, R., Cornell, J.y., and Hall, C. 2001. Modeling the spatial pattern of land-use change with GEOMOD2: application and validation in Costa Rica. Agriculture, Ecosystems and Environment 85, 191-203. https://doi.org/10.1016/S0167-8809(01)00183-9.
Poorzady, M., Bakhtiari, F. 2009. Spatial and temporal changes of Hyrcanian forest in Iran. iForest 2, 198-206. http://dx.doi.org/10.3832/ ifor0515-002
Rafiee, R., Salman Mahiny, A., Khorasani, N. 2009. Assessment of changes in urban green spaces of Mashad city using satellite data. International Journal of Applied Earth Observation and Geoinformation 11, 431-438. https://doi.org/10.1016/j.jag.2009.08.005.
Raja Naqvi, H., Siddiqui, L., Mirana Devi, L., Siddiqui, M.A. 2014. Landscape transformation analysis employing compound interest formula in the Nun Nadi Watershed, India. The Egyptian Journal of Remote Sensing and Space Science 17, 149-157. https://doi.org/10.1016/j.ejrs.2014.09.001.
Ramachandra, T.V., Aithal, B.H., Sanna, D.D. 2012. Insights to urban dynamics through landscape spatial pattern analysis. International Journal of Applied Earth Observation and Geoinformation 18, 329-343. https://doi.org/10.1016/j.jag.2012.03.005.
Redondo-Vega, J.M., Gómez-Villar, A., Santos-González, J., González-Gutiérrez, R.B., Álvarez-Martínez, J. 2017. Changes in land use due to mining in the north-western mountains of Spain during the previous 50 years. Catena 149 (3), 844-856. https://doi.org/10.1016/j.catena.2016.03.017.
Riitters, K.H., O’Neill, R.V., Wickham, J.D., Jones, K.B. 1996. A note on contagion indices for landscape analysis. Landscape Ecology 11 (4), 197-202. https://doi.org/10.1007/BF02071810.
Rouhi-Moghaddam, E., Hosseini, S.M., Ebrahimi, E., Tabari, M., Rahmani, A. 2007. Comparison of growth, nutrition and soil properties of pure stands of Quercus castaneifolia and mixed with Zelkova carpinifolia in the Hyrcanian forests of Iran. Forest Ecology and Management 255 (3-4), 1149-1160. https://doi.org/10.1016/j.foreco.2007.10.048.
Saei, K. 1942. Slight notion about forests of Iran. Tehran Forestry Office Press. Tehran, Iran. (In Persian).
Sakieh, Y., Salmanmahiny, A. 2016. Performance assessment of geospatial simulation models of land-use change-a landscape metric-based approach. Environmental Monitoring Assessment 188 (169), 1-16. https://doi.org/10.1007/s10661-016-5179-5.
Sangermano, F., Eastman, J.R., Zhu, H. 2010. Similarity weighted instance based learning for the generation of transition potentials in land change modeling. Transactions in GIS 14 (5), 569-580. https://doi.org/10.1111/j.1467-9671.2010.01226.x.
Sangermano, F., Toledano, J., Eastman, J.R. 2012. Land cover change in the Bolivian Amazon and its implications for REDD+ and endemic biodiversity. Landscape Ecology 27, 571-584. https://doi.org/doi:10.1007/s10980-012-9710-y.
Schulz, J.J., Cayuela, L., Echeverria, C., Salas, J., Rey Benayas, J.M. 2010. Monitoring land cover change of the dryland forest landscape of Central Chile (1975-2008). Applied Geography 30 (3), 436-447. https://doi.org/10.1016/j.apgeog.2009.12.003.
Subedi, P., Subedi, K., and Thapa, B. 2013. Application of a Hybrid Cellular Automaton – Markov (CA-Markov) Model in Land-Use Change Prediction: A Case Study of Saddle Creek Drainage Basin, Florida. Applied Ecology and Environmental Sciences 1 (6), 126-132. https://doi.org/doi:10.12691/aees-1-6-5.
Talebi Amiri, S., Azari Dehkordi, F., Sadeghi, S.H., Soufbaf, S.R. 2009. Study on Landscape Degradation in Neka Watershed Using Landscape Metrics. Environmental sciences 6 (3), 133-144 (In Persian). http://en.journals.sid.ir/ViewPaper.aspx?ID=169879.
Vranken, I., Djibu Kabulu, J.P., Munyemba Kankumbi, F., Mama, A., Iyongo Waya Mongo, L., Bamba, I., Laghmouch, M., Bogaert, J. 2011. Ecological impact of habitat loss on African landscapes and biodiversity. Chapter 14. Nova Science Publishers, Inc 14, 365-388. https://orbi.ulg.ac.be/bitstream/2268/107896/1/2011.vranken.nova.pdf.
Xin, L., Jianli, D., Gang, W., Yanjun, Z., Zhe, Z., Xueying, Y. 2014. Change of LUCC and Characteristics of Landscape Pattern in a Typical Oasis in Turkmenistan. Journal of Desert Research 34 (1), 260-267. https://doi.org/10.7522/j.issn.1000-694X.2013.00307.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
El autor o autora conserva todos los derechos sobre su artículo y cede a la revista el derecho de la primera publicación, no siendo necesaria la autorización de la revista para su difusión una vez publicado. Una vez publicada la versión del editor el autor está obligado a hacer referencia a ella en las versiones archivadas en los repositorios personales o institucionales.
El artículo se publicará con una licencia Creative Commons de Atribución, que permite a terceros utilizar lo publicado siempre que se mencione la autoría del trabajo y la primera publicación en esta revista.
Se recomienda a los autores/as el archivo de la versión de editor en repositorios institucionales.