Modelado de precipitaciones extremas bajo escasez de datos e incertidumbre en la región pampeana (Argentina)

Autores/as

DOI:

https://doi.org/10.18172/cig.3371

Palabras clave:

intensidad de precipitación, invariancia de escala, escalado simple, Pampa, Argentina

Resumen

La evaluación de la capacidad de escorrentía superficial de las tormentas es esencial para el diseño de la infraestructura de drenaje, para el manejo de los excesos de lluvias y el control de la erosión del suelo. El conocimiento de los valores de intensidad de precipitación a escalas mayores que el diario es una clave en este proceso. Sin embargo, la información disponible en la región se reduce, debido a la falta de instrumentos y datos históricos. Una alternativa para solucionar este problema consiste en la búsqueda de relaciones matemáticas para el cambio de escala de valores diarios, más comunes y disponibles, a valores sub-horarios, necesarios para la estimación de los volúmenes de escorrentía en pequeñas cuencas así como el poder erosivo de la precipitación. Se presentan los primeros resultados obtenidos en la experimentación y búsqueda de relaciones matemáticas para el cambio de escala temporal para valores de intensidad de precipitación, válidos para un amplio territorio con clara variabilidad climática y ecológica. El objetivo principal de este trabajo fue investigar la propiedad de la invariancia de la escala en la intensidad de la lluvia y su aplicación a la construcción de las curvas IDF mediante escalamiento simple. La regionalización de los valores obtenidos en las áreas de estudio se estableció como un objetivo complementario. La hipótesis de invariancia de escala y la posibilidad de aplicar escala simple a valores de intensidad de precipitación se han verificado utilizando datos pluviométricos y pluviográficos registrados en la Región Pampeana argentina en localidades climáticamente y ecológicamente diferentes. El presente trabajo proporciona los criterios y valores de referencia para la construcción y actualización de las curvas de las IDF en la región, donde son altamente necesarios, lo que conduce a avances en hidrología en áreas con escasa o nula información sobre las precipitaciones. Los resultados aportan nuevas pruebas sobre las relaciones de escala en variables hidrológicas, de utilidad para su aplicación en casos en que la información de referencia es escasa. Esto contribuye al conocimiento de las características de precipitación local y proporciona valores de referencia que se utilizarán en aplicaciones prácticas.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

M. Puricelli, Instituto Nacional de Tecnología Agropecuaria Estación Experimental Agropecuaria Balcarce

Estación Experimental Agropecuaria Balcarce

Área de Agronomía

Investigador

Citas

Aliaga, V.S., Ferrelli, F., Alberdi-Algañaraz, E.D., Bohn, V.Y., Piccolo, M.C. 2016. Distribution and variability of precipitation in the Pampas, Argentina. Cuadernos de Investigación Geográfica 42 (1), 261-280. http://doi.org/10.18172/cig.2867.

Bara, M., Kohonová, S., Szolgay, J., Gaál, L, Hlavčová, K. 2010. Assessing of IDF curves for hydrological design by simple scaling of 1-day precipitation totals. Slovak Journal of Civil Engineering 3, 1-6. http://www.svf.stuba.sk/docs/sjce/2010/2010_3/file2.pdf.

Basile, P.A., Riccardi, G., Stenta, H. 2011. Derivación y parametrización de curvas IDR para Rosario, Casilda y Zavalla (Santa Fé, Argentina). In: G. Riccardi, H. Stenta, C.M. Scuderi, P.A. Basile, E. Zimmermann (Eds.), III Taller sobre Regionalización de Precipitaciones Máximas. Universidad Nacional de Rosario, pp. 217-226.

Blanchet, J., Ceresetti, D., Molinié, G., Creutin, J.D. 2016. A regional GEV scale-invariant framework for intensity-duration-frequency analysis. Journal of Hydrology 540, 82-95. https://doi.org/10.1016/j.jhydrol.2016.06.007.

Blöschl, G., Sivapalan, M. 1995. Scale issues in hydrological modeling: A review. Hydrological Processes 9 (3-4), 251-290. https://doi.org/10.1002/hyp.3360090305.

Blöschl, G. 2001. Scaing in hydrology.Hydrological Processes 15, 709-711. https://doi.org/10.1002/hyp.432.

Bocchiola, D., De Michele, C., Rosso, R. 2003. Review of recent advances in index flood estimation. Hydrology and Earth System Sciences 7 (3), 283-296. https://hal.archives-ouvertes.fr/hal-00304779/document.

Bougadis, J., Adamowski, L. 2006. Scaling model of rainfall intensity - duration - frequency relationship. Hydrological Processes 20 (17), 3747-3757. https://doi.org/10.1002/hyp.6386.

Buckart, R., Bárbaro, N.O., Sánchez, R.O., Gómez, D.A. 1999. Eco-regiones de la Argentina. Administración de Parques Nacionales, Buenos Aires, 42 pp.

Buishand, T.A. 1982. Some methods for testing the homogeneity of rainfall records. Journal of Hydrology 58, 11-27. http://www.homogenisation.org/files/private/WG1/Bibliography/Comparisons_and_Reviews/buishand.pdf.

Burgos, V., López, P., Maza, J., Salcedo, A. P. 2015. Delimitación de áreas de riesgo hídrico por crecidas de los ríos El Tala y Paclín, Catamarca. Actas del XXV Congreso Nacional de Agua, Argentina, Paraná, pp. 344-356.

Burlando, P., Rosso, R. 1996. Scaling and multiscaling models of depth-duration-frequency curves for storm precipitation. Journal of Hydrology 187 (1-2), 45-64. https://doi.org/10.1016/S0022-1694(96)03086-7.

Casas, R. 2015. La erosión del suelo en Argentina. In: R. Casas, G.F. Albarracín (Eds.), El deterioro del suelo y el ambiente en la Argentina. Tomo II. FECIC. Buenos Aires, pp. 433-452.

Chebana, F., Dabo-Niang, S., Ouarda, T.B.M.J. 2012. Exploratory functional flood frequency analysis and outlier detection. Water Resources Research 48 (4), W04514. http://doi.org/10.1029/2011WR011040.

Chow, V.T., Maidment, D.R., Mays, L.W. 1994. Hidrología Aplicada. Mc Graw Hill, Bogotá, 584 pp.

Collazos, G., Cazenave, G. 2015. Curvas IDF para el centro de la Pcia. De Buenos Aires. Actas del XXV Congreso Nacional del Agua. Paraná, pp. 480-486. https://pilotosaladesituacion.files.wordpress.com/2015/01/conagua2015_resumenes-p287-y-303.pdf.

Davison, J., Wong, M. C. 2005. Guidelines on integrating severe weather warnings into disaster risk management. World Meteorological Organization, WMO/TD 1292, Geneva. 26 pp. https://www.wmo.int/pages/prog/amp/pwsp/pdf/TD-1292.pdf.

Devoto, G.A. 2011. Hidrología de las crecidas en el AMBA. In: A. Kreimer, D. Kullock, F.B. Baldés (Eds.), Inundaciones en el Área Metropolitana de Buenos Aires. The World Bank. Disaster Risk Management Working Paper Series 3, pp. 91-107. http://siteresources.worldbank.org/INTDISMGMT/Resources/buenosaires.pdf.

Di Leo, C.M., Aragón, A., Marlats, R., Bruno, J.E. 1999. Erosividad de las precipitaciones en Tandil, Provincia de Buenos Aires. Ciencia del Suelo 17 (2), 58-61. https://www.suelos.org.ar/publicaciones/vol_17n2/di_leo_58-61.pdf.

Durrans, S.R., Kirby, J.T. 2004. Regionalization of extreme precipitation estimates for the Alabama rainfall atlas. Journal of Hydrology 295 (1-4), 101-107. https://doi.org/10.1016/j.jhydrol.2004.02.021.

Easterling, D.R., Evans, J.L., Groisman, Y., Karl, T.R., Kunkel, K.E., Ambenje, P. 2000. Observed variability trends in extreme climate events: a brief review. Bulletin of the American Meteorology Society 81 (3), 417-425. https://doi.org/10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2.

Gabriels, D. 2006. Assessing the Modified Fournier Index and the Precipitation Concentration Index for some European countries. In: J. Poesen (Ed.), Soil Erosion in Europe. John Wiley and Sons, Chichester, pp. 675-684. https://doi.org/10.1002/0470859202

García-Bartual, R., Schneider, N. 2001. Estimating maximum expected short-duration rainfall intensities from extreme convective storms. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere 26 (9), 675-681. https://doi.org/10.1016/S1464-1909(01)00068-5.

Gebremichael, M., Over, T.M., Krajewsky, W.F. 2006. Comparison of the scaling characteristics of rainfall derived from space-based and ground-based radar observations. Journal of Meteorology 7, 1277-1249. https://doi.org/10.1175/JHM549.1.

Gentine, P., Troy, T.J., Lintner, B.R., Findell, K.L. 2012. Scaling in surface hydrology: Progress and challenges. Journal of Contemporary Water Research & Education 147 (1), 28-40. http://doi.org/10.1111/j.1936-704X.2012.03105.x.

Ghanmi, H., Bargaoui, Z., Mallet, C. 2016. Estimation of intensity-duration-frequency relationships according to the property of scale invariance and regionalization analysis in a Mediterranean coastal area. Journal of Hydrology 541, 38-49. https://doi.org/10.1016/j.jhydrol.2016.07.002.

González-Rouco, F., Jiménez, J.L., Quesada, V., Valero, F. 2001. Quality control and homogeneity of precipitation data in the southwest of Europe. Journal of Climate 14, 964-978. https://doi.org/10.1175/1520-0442(2001)014<0964:QCAHOP>2.0.CO;2.

Gupta, V.K., Waymire, E. 1987. On Taylor's hypothesis and dissipation in rainfall. Journal of Geophysical Research 92 (D8), 9657-9660. http://doi.org/10.1029/JD092iD08p09657.

Gupta, V.K., Waymire, E. 1990. Multiscaling properties of spatial rainfall and river flow distributions. Journal of Geophysical Research 95 (D3), 1999-2009. https://doi.org/10.1029/JD095iD03p01999.

Hailegeorgis, T., Thorolfsson, S.T., Alfredsen, K. 2013. Regional frequency analysis of extreme precipitation with consideration of uncertainties to update IDF curves for the city of Trondheim. Journal of Hydrology 498, 305-318. https://doi.org/10.1016/j.jhydrol.2013.06.019.

Ihaka, R., Gentleman, R. 1996. R: A language for data analysis and graphics. Journal of Computation and Graphical Statistics 5 (3), 299-314. http://doi.org/10.2307/1390807.

Intergovernamental Panel of Climate Change. 2012. Managing the risks of extremes events and disasters to advance climate change adaptation. Cambridge University press, 582 pp. https://www.ipcc.ch/pdf/special-reports/srex/SREX_Full_Report.pdf.

Isaaks, E.H., Srivastava, R.M. 1999. Applied Geostatistics. Oxford University Press, Oxford, 561 pp. ftp://shock.geomatics.ncku.edu.tw/array1/for_test/IsaaksBook.pdf.

Jiang, P., Tung, Y.K. 2013. Establishing rainfall depth–duration–frequency relationships at daily rain gauge stations in Hong Kong. Journal of Hydrology 504, 80-93. https://doi.org/10.1016/j.jhydrol.2013.09.037.

Karl, T.R., Easterling, D.R. 1999. Climate extremes: selected review and future research directions. Climatic Change 42 (1), 309-325. https://doi.org/10.1007/978-94-015-9265-9_17.

Kite, G. 1988. Frequency and risk analyses in hydrology. Water Resources Publications, Littleton, Colorado. 257 pp.

Klemeš, V. 1983. Conceptualization and scale in hydrology. Journal of Hydrology 65 (1-3), 1-23. https://doi.org/10.1016/0022-1694(83)90208-1.

Koutsoyiannis, D., Kozonis, D., Manetas, A. 1998. A mathematical framework for studying rainfall intensity duration frequency relationships, Journal of Hydrology 206, 118-135. https://doi.org/10.1016/S0022-1694(98)00097-3.

Kundzewicz, Z., Robson, A.J. 2004. Change detection in hydrological records-a review of the methodology. Hydrological Sciences, 49 (1), 7-19. http://doi.org/10.1623/hysj.49.1.7.53993.

Kunkel, K.E., Andsager, K., Easterling, D.R. 1999. Long-term trends in extreme precipitations events over the contermninous United States and Canada. Journal of Climate 12, 2515-2527. https://doi.org/10.1175/1520-0442(1999)012<2515:LTTIEP>2.0.CO;2.

Kuzuha, Y., Komatsu, Y., Tomosugi, K., Kishii, T. 2005. Regional flood frequency analysis, scaling and PUB. Journal of Japan Society of Hydrololy and Water Resources 18 (4), 441-458. http://doi.org/10.3178/jjshwr.18.441.

Langousis, A., Veneziano, D., Furcolo, P., Lepore, C. 2009. Multifractal rainfall extremes: theoretical analysis and practical estimation. Chaos, Solitons and Fractals 39 (3), 1182-1194. https://doi.org/10.1016/j.chaos.2007.06.004.

Lovejoy, S., Schertzer, D. 1985. Generalized scale invariance in the atmosphere and fractal models of rain. Water Resources Research 21 (8), 1233-1250. https://doi.org/10.1029/WR021i008p01233.

Mailhot, A, Duchesne, S., Caya, D., Talbot, G. 2007. Assessment of future change in intensity-duration-frequency (IDF) curves for southern Quebec using the Canadian Regional Climate Model (CRCM). Journal of Hydrology 347, 197-210. https://doi.org/10.1016/j.jhydrol.2007.09.019.

Mauriño, M. 2004. Generalized rainfall-duration-frequency relationships: Applicability in different climatic regions of Argentina. Journal of Hydrologic Engineering 9 (4), 269-274. https://doi.org/10.1061/(ASCE)1084-0699(2004)9:4(269).

Menabde, M., Seed, A., Pegram, G. 1999. A simple scaling model for extreme rainfall. Water Resources Research 35 (1), 335-339. https://doi.org/10.1029/1998WR900012.

Mongomery, D.C., Runger, G.C. 1996. Probabilidad y Estadística Aplicada a la Ingeniería. McGraw-Hill, Mexico, 995 pp.

Naghettini, M. 2012. Application of scale invariance properties of rainfall for estimating the intensity-duration-frequency relationships at Uberaba, in south-central Brazil. Aqua-LAC 4 (2), 45-60. http://unesdoc.unesco.org/images/0022/002270/227014m.pdf.

Nash, J. 2010. Directions for open source software over the next decade. Futures 42 (4), 427-433. https://doi.org/10.1016/j.futures.2009.11.027.

Nhat. L.M., Tachikawa, Y., Sayama, T., Takara, K. 2008. Development of regional rainfall intensity-duration frequency curves based on scaling properties. Annual Journal of Hydraulic Engineering, JSCE, 52, 85-90. http://doi.org/10.2208/prohe.52.85.

Overeem, A., Buishand, A., Holleman, I. 2008. Rainfall depth-duration-frequency curves and their uncertainties. Journal of Hydrology 348, 124-134. https://doi.org/10.1016/j.jhydrol.2007.09.044.

Panthou, G., Vischel, T., Lebel, T., Quantin, G., Molinié, G. 2014. Characterizing the space–time structure of rainfall in the Sahel with a view to estimating IDF curves. Hydrology and Earth System Sciences 18, 5093-5107. https://doi.org/10.5194/hess-18-5093-2014.

Pappenberger, F., Beven K.J. 2006. Ignorance is bliss: Or seven reasons not to use uncertainty analysis. Water Resource Research 42 (5), W05302. http://doi.org/10.1029/2005WR004820.

Pavlopoulos, H., Gupta, V.K. 2003. Scale invariance of regional wet and dry duration of rain fields: a diagnostic study. Journal of Geophysical Research 108 (D8), 8387. https://doi.org/10.1029/2002JD002763.

Paixao, E., Auld, H., Mirza, M.M.Q., Klaassen, J., Shephard, M. 2011. Regionalization of heavy rainfall to improve climatic design values for infrastructure: case study in Southern Ontario, Canada. Hydrological Sciences Journal 56 (7), 1067-1089. http://doi.org/10.1080/02626667.2011.608069.

Pettitt, A. N. 1979. A non-parametrical approach to the change-point problem. Appied Statistics 28 (2), 126-135. http://doi.org/10.2307/2346729.

Puricelli, M. 2014. Actualización y análisis de las curvas intensidad - duración - frecuencia para la localidad de Balcarce, provincia de Buenos Aires, Argentina. Revista de Geología Aplicada a la Ingeniería y al Ambiente 32, 61-70. https://www.researchgate.net/publication/269993673_Update_and_analysis_of_intensity_-_duration_-_frequency_curves_for_Balcarce_Buenos_Aires_province_Argentina?ev=prf_high.

Robledo, F.A., Penalba, O. C. 2008. Análisis estacional de la frecuencia diaria y la intensidad de los extremos de precipitación sobre el sudeste de Sudamérica. Meteorológica 32-33 (1-2), 31-49. http://www.scielo.org.ar/pdf/meteoro/v32n1-2/v32n1-2a03.pdf .

Rodríguez-Iturbe, I., Rinaldo, A. 1997. Fractal river basins: Chance and self-organization. Cambridge University Press. 537 pp. https://www.amazon.com/Fractal-River-Basins-Chance-Self-Organization/dp/0521004055#reader_0521004055.

Rojas, A.E., Conde, A.A. 1985. Estimación del factor “R” de la Ecuación Universal de Pérdida de Suelos para el Centro-Este de la República Argentina. Ciencia del Suelo 3 (1-2), 85-94.

Schindewolf, M., Schmidt, J. 2012. Parameterization of the EROSION 2D/3D soil erosion model using a small-scale rainfall simulator and upstream runoff simulation. Catena 91, 47-55. https://doi.org/10.1016/j.catena.2011.01.007.

Scotta, E.S., Nani, L. A., Conde, A.A., Rojas, A.C., Castañeira, H., Papparotti, O.F. 1989. Manual de sistematización de tierras para control de la erosión hídrica y aguas superficiales excedentes (2ª edición corregida y aumentada). Ediciones INTA. Serie Didáctica 17, 56 pp.

Sequeira, M. 2006. Determinación de la relación entre la intensidad, la duración y la frecuencia de las precipitaciones en Bahía Blanca. Actas de las IV Jornadas Interdisciplinarias del Sudoeste Bonaerense. Universidad Nacional del Sur. Bahía Blanca, Argentina, pp. 69-78.

Sivakumar, B. 2000. Fractal analysis of rainfall observed in two different climatic regions. Hydrological Sciences Journal 45 (5), 727-738. http://doi.org/10.1080/02626660009492373.

Sivapalan, M., Blöschl, G. 1998. Transformation of point rainfall to areal rainfall: Intensity-duration-frequency curves. Journal of Hydrology 204, 150-167. https://doi.org/10.1016/S0022-1694(97)00117-0.

Sivapalan, M., 2003. Prediction in ungauged basins: a grand challenge for theoretical hydrology. Hydrological Processes 17, 3163-3170. http://doi.org/10.1002/hyp.5155.

Szolgay, J., Parajka, J., Kohnová, S., Hlavčová, K. 2009. Comparison of mapping approaches of design annual maximum daily precipitation. Atmospheric Research 92 (3), 289-307. https://doi.org/10.1016/j.atmosres.2009.01.009.

Travis, W.R. 2014. Weather and climate extremes: Pacemakers of adaptation?. Water and Climate Extremes 5-6, 29-39. https://doi.org/10.1016/j.wace.2014.08.001.

USGS. 1982. Guidelines for determining flood flow frequency. Bulletin 17B of the Hydrology Subcommittee, Reston, 194 pp. https://water.usgs.gov/osw/bulletin17b/dl_flow.pdf.

Van de Vyver, H., Demarée, G..R. 2010.Construction of Intensity–Duration–Frequency (IDF) curves for precipitation at Lubumbashi, Congo, under the hypothesis of inadequate data. Hydrological Sciences Journal 55 (4), 555-564. http://doi.org/10.1080/02626661003747390.

Van Dijk, A.I.J.M., Bruijnzeel, L.A., Rosewell, C.J. 2002. Rainfall intensity-rainfall kinetic energy relationships: a critical literature appraisal. Journal of Hydrology 261 (1-4), 1-23. https://doi.org/10.1016/S0022-1694(02)00020-3.

Varela, C., Varni, M., Entraigas, I. 2003. Curvas intensidad-duración- frecuencia para diez años pluviográficos en la ciudad de Azul, centro de la provincia de Buenos Aires. Revista Argentina de Agrometeorología 3, 67-70. http://www.azul.bdh.org.ar/bdh3/archivos/publications/555743/Modelo_de_transporte_de_solutos_en_aguas_subterraneas_de_la_ciudad_de_Azul.pdf.

Vidal, N.A., Cousillas, C.F. 1982. Análisis de las precipitaciones del sudeste bonaerense. I: Período de retorno esperado para lluvias máximas. Editorial EUDEM, Universidad Nacional de Mar del Plata, Mar del Plata, 41 pp.

Vogel, R.M. 2005. Regional calibration of watershed models. In: D.F. Frevert, V.P. Singh, Watershed Models. CRC Press, Boca Raton, pp.47-71. https://doi.org/10.1201/9781420037432.ch3.

Wood, S.N. 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society, Series B, Statistical Methodology 73 (1), 3-36. http://doi.org/10.1111/j.1467-9868.2010.00749.x.

Yevyevich, V. 1972. Probability and Statistics in Hydrology. Water Resources Publications, Fort Collins, Colorado, 50 pp.

Yu, P.S., Yang, T.C., Lin, C.S. 2004. Regional rainfall intensity formulas based on scaling property of rainfall. Journal of Hydrology 295 (1-4), 108-123. https://doi.org/10.1016/j.jhydrol.2004.03.003.

Zamanillo, E., Larenze, G., Tito, M.J., Perez, M., Garat, M.E. 2008. Tormentas de diseño para la provincia de Entre Ríos. Univ. Tecnológica Nacional, Buenos Aires. 108 pp.

Zhou, X., Persaud, N., Wang, H. 2006. Scale invariance of daily runoff time series in agricultural watersheds. Hydrology and Earth System Sciences 10 (1), 79-91. https://hal.archives-ouvertes.fr/hal-00304818.

Descargas

Publicado

2018-06-29

Cómo citar

1.
Puricelli M. Modelado de precipitaciones extremas bajo escasez de datos e incertidumbre en la región pampeana (Argentina). CIG [Internet]. 29 de junio de 2018 [citado 4 de marzo de 2025];44(2):719-42. Disponible en: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/3371

Número

Sección

Artículos