Importancia de los bloques de hialoclastita en la morfogénesis periglaciar y eólica a escala media en ambiente semiárido antártico, Isla James Ross, Península Antártica
DOI:
https://doi.org/10.18172/cig.3800Palabras clave:
ordenación de suelos, ambiente periglaciar, Antártida, acumulación eólica, fusion nivalResumen
En este trabajo tratamos de describir los procesos que conducen a la creación de un sistema específico periglaciar y eólico, que evoluciona alrededor de bloques de hialoclastita en la Isla James Ross, nordeste de la Península Antártica. Estos bloques fueron depositados como resultado del avance a finales del Holoceno del Glaciar Whisky, formando un cordón de bloques de unos 5 km de longitud, desde la morrena del Glaciar Whisky hasta la Bahía Brandy. La combinación del seguimiento de la temperatura del suelo, medidas de la cubierta nival, análisis granulométricos y trabajo de campo permitieron cuantificar y entender las interacciones de los procesos periglaciares y eólicosculos y atrapan el espesor de la cubierta nival. Los bloques brechosos de hialoclastita act lugar de referencia para la tem que conducen a la formación de un sistema específico a mediana escala alrededor de los bloques. Se instalaron sondas de temperatura del suelo en enero de 2017 en la proximidad de dos bloques seleccionados. Los dos lugares de estudio, en el Lago Monolith (bloque mayor) y el río Keller (bloque menor), fueron también controlados con estacas de nieve y cámaras de seguimiento. Una estación meteorológica automática en los Abernethy Flats, localizada aproximadamente 3 km al nordeste, fue utilizada como lugar de referencia para la temperatura del suelo y el espesor de la cubierta nival. Los bloques brechosos de hialoclastita actúan como obstáculos y atrapan la nieve desplazada por el viento, dando lugar a la formación de acumulaciones de nieve a sotavento y barlovento. Estas acumulaciones afectan al régimen termal del suelo y conducen al transporte de partículas finas por el agua de fusión durante el verano. La cubierta nival también atrapa arena fina transportada por el viento, dando lugar a la formación de anillos de arena fina en los lados de sotavento y barlovento de los bloques, una vez que la nieve ha fundido. Además, el agua de fusión afecta al contenido de humedad del suelo, creando condiciones favorables, aunque espacialmente limitadas, para la colonización por musgos y líquenes.Descargas
Citas
Altunkaynak, Ş., Aldanmaz, E., Güraslan, I.N., Çalışkanoğlu, A.Z., Ünal, A., Nývlt, D. 2018. Lithostratigraphy and petrology of Lachman Crags and Cape Lachman lava-fed deltas, Ulu Peninsula, James Ross Island, north-eastern Antarctic Peninsula: Preliminary results. Czech Polar Reports 8 (1), 60-83.
Atkins, C.B., Dunbar, G.B. 2009. Aeolian sediment flux from sea ice into Southern McMurdo Sound, Antarctica. Global and Planetary Change 69 (3), 133-141. https://doi.org/10.1016/j.gloplacha.2009.04.006.
Ayling, B.F., McGowan, H.A. 2006. Niveo-eolian sediment deposits in coastal South Victoria Land, Antarctica: Indicators of regional variability in weather and climate. Arctic, Antarctic and Alpine Research 38 (3), 313-324. https://doi.org/10.1657/1523-0430(2006)38[313:NSDICS]2.0.CO;2.
Balks, M.R., O’Neill, T.A. 2016. Soil and permafrost in the Ross Sea region of Antarctica: stable or dynamic? Cuadernos de Investigación Geográfica 42 (2), 415-434. https://doi.org/10.18172/cig.2923.
Benn, D.I., Evans, D.J.A. 2010. Glaciers and Glaciation. 2nd Edition. 802 pp., Hodder Arnold Publication, London.
Björck, S., Olsson, S., Ellis-Evans, C., Håkansson, H., Humlum, O., de Lirio, J.M. 1996. Late Holocene palaeoclimatic records from lake sediments on James Ross Island, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology 121 (3-4), 195-220. https://doi.org/10.1016/0031-0182(95)00086-0.
Bourke, M.C., Ewing, R.C., Finnegan, D., McGowan, H.A. 2009. Sand dune movement in the Victoria Valley, Antarctica. Geomorphology 109, 14-160. https://doi.org/10.1016/j.geomorph/2009.02.028.
Brookfield, M.E. 2011. Aeolian processes and features in cool climates. In: Martini, I.P., French, H.M., Pérez Alberti, A. (Eds.), Ice-marginal and periglacial processes and sediments. Geological Society of London, Special Publication, 354, pp. 241-258. https://doi.org/10.1144/SP354.16.
Burton-Johnson, A., Black, M., Fretwell, P.T., Kaluza-Gilbert, J. 2016. An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: a new rock outcrop map and area estimation for the entire Antarctic continent. Cryosphere 10 (4), 1665-1677. https://doi.org/10.5194/tc-101665-2016.
Carrivick, J.L., Davies, B.J., Glasser, N.F., Nývlt, D., Hambrey, M.J. 2012. Late-Holocene changes in character and behaviour of land-terminating glaciers on James Ross Island, Antarctica. Journal of Glaciology 58 (212), 1176-1190. https://doi.org/10.3189/2012JoG11J148.
Crame, J.A., Pirrie, D., Riding, J.B., Thomson, M.R.A. 1991. Campanian–Maastrichtian (Cretaceous) stratigraphy of the James Ross Island area, Antarctica. Journal of the Geological Society, London 148, 1125-1140. https://doi.org/10.1144/gsjgs.148.6.1125.
Davies, B.J., Hambrey, M.J., Smellie, J.L., Carrivick, J.L., Glasser, N.F. 2012. Antarctic Peninsula Ice Sheet evolution during the Cenozoic Era. Quaternary Science Reviews 31, 30-66. https://doi.org/10.1016/j.quascirev.2011.10.012.
Davies, B.J., Glasser, N.F., Carrivick, J.L., Hambrey, M.J., Smellie, J.L., Nývlt, D. 2013. Landscape evolution and ice-sheet behaviour in a semi-arid polar environment: James Ross Island, NE Antarctic Peninsula. In: Hambrey, M.J., Barker, P.F., Barrett, P.J., Bownam, V., Davies, B., Smellie, J.L., Tranter, M. (Eds.), Antarctic Palaeoenvironments and Earth-Surface Processes. Geological Society of London, Special Publication, 381, pp. 353-395. https://doi.org/10.1144/SP381.1.
Davies, B.J., Golledge, N.R., Glasser, N.F., Carrivick, J.L., Ligtenberg, S.R.M., Barrand, N.E., van den Broeke, M., Hambrey, M.J., Smellie, J.L. 2014. Modelled glacier response to centennial temperature and precipitation trends on the Antarctic Peninsula. Nature Climate Change 4 (11), 993-998. https://doi.org/10.1038/nclimate2369.
Del Valle, R.A., Elliot, D.H., Macdonald, D.I.M. 1992. Sedimentary basins on the east flank of the Antarctic Peninsula: proposed nomenclature. Antarctic Science 4, 477-478. https://doi.org/10.1017/S0954102092000695.
Engel, Z., Nývlt, D., Láska, K. 2012. Ice thickness, areal and volumetric changes of Davies Dome and Whisky Glacier (James Ross Island, Antarctic Peninsula) in 1979-2006. Journal of Glaciology 58 (211), 904-914. https://doi.org/10.3189/2012JoG11J156.
Engel, Z., Láska, K., Nývlt, D., Stachoň, Z. 2018. Surface mass balance of small glaciers on James Ross Island, north-eastern Antarctic Peninsula, during 2009-2015. Journal of Glaciology 64 (245), 349-361. https://doi.org/10.1017/jog.2018.17.
Evans, D.J.A., Ed. 2003. Glacial Landsystems. 532 pp., Arnold, London.
Eyles, N. 1983. Glacial geology: a landsystem approach. In: N. Eyles (Ed.), Glacial Geology: An Introduction for Engineers and Earth Scientists. Pergamon Press, Oxford, pp. 1-18. https://doi.org/10.1016/B978-0-08-030263-8.50007-5.
Frauenfeld, O.W., Zhang, T., McCreight, J.L., 2007. Northern hemisphere freezing/thawing index variations over the twentieth century. International Journal of Climatology 27, 47-63. https://doi.org/10.1002/joc1372.
French, H.M. 2017. The Periglacial Environment. 4th Edition. Wiley-Blackwell, Oxford, 515 pp.
Gillies, J.A., Nickling, W.G., Tilson, M. 2013. Frequency, magnitude, and characteristics of aeolian sediment transport: McMurdo Dry Valleys, Antarctica. Journal of Geophysical Research-Earth Surface 118 (2), 461-479. https://doi.org/10.1002/jgrf.20007.
Glasser, N.F., Davies, B.J., Carrivick, J.L., Rodés, A., Hambrey, M.J., Smellie, J.L., Domack, E. 2014. Ice-stream initiation, duration and thinning on James Ross Island, northern Antarctic Peninsula. Quaternary Science Reviews 86, 78-88. https://doi.org/10.1016/j.quascirev.2013.11.012.
Hedding, D.W., Nel, W., Anderson, R.L. 2015. Aeolian processes and landforms in the sub-Antarctic: preliminary observations from Marion Island. Polar Research 34 (1), 26365. https://dx.doi.org/10.3402/polar.v34.26365.
Hjort, C., Ingólfsson, Ó., Möller, P., Lirio, J.M. 1997. Holocene glacial history and sea-level changes on James Ross Island, Antarctic Peninsula. Journal of Quaternary Science 12, 259-273. https://doi.org/10.1002/(SICI)1099-1417(199707/08)12:4<259::AID-JQS307>3.3.CO;2-Y.
Hrbáček, F., Láska, K., Engel, Z. 2016. Effect of Snow Cover on the Active-Layer Thermal Regime – A Case Study from James Ross Island, Antarctic Peninsula. Permafrost and Periglacial Processes 27, 307-315. https://doi.org/10.1002/ppp.1871.
Hrbáček, F., Nývlt, D., Láska, K. 2017. Active layer thermal dynamics at two lithologically different sites on James Ross Island, Eastern Antarctic Peninsula. Catena, 149, 592-602. https://doi.org/10.1016/j.catena.2016.06.020.
Hrbáček, F., Vieira, G., Oliva, M., Balks, M., Guglielmin, M., de Pablo, M.A., Molina, A., Ramos, M., Goyanes, G., Meiklejohn, I., Abramov, A., Demidov, N., Fedorov-Davydov, D., Lupachev, A., Rivkina, E., Láska, K., Kňažková, M., Nývlt, D., Raffi, R., Strelin, J., Sone, T., Fukui, K., Dolgikh, A., Zazovskaya, E., Mergelov, N., Osokin, N., Miamin, V., 2019. Active layer monitoring in Antarctica: an overview of results from 2006 to 2015. Polar Geography, in press. https://doi.org/10.1080/1088937X.2017.1420105.
Johnson, J.S., Bentley, M.J., Roberts, S.J., Binnie, S.A., Freeman, S.P.H.T. 2011. Holocene deglacial history of the northeast Antarctic Peninsula - A review and new chronological constraints. Quaternary Science Reviews 30, 3791-3802. https://doi.org/10.1016/j.quascirev.2011.10.011.
Kavan, J., Dagsson-Waldhauserova, P., Renard, J.B., Láska, K., Ambrožová, K. 2018. Aerosol concentrations in relationship to local atmospheric conditions on James Ross Island, Antarctica. Frontiers in Earth Science-Atmospheric Science 6, 207. https://doi.org/10.3389/feart.2018.00207.
Košler, J., Magna, T., Mlčoch, B., Mixa, P., Nývlt, D., Holub, F.V. 2009. Combined Sr, Nd, Pb and Li isotope geochemistry of alkaline lavas from northern James Ross Island (Antarctic Peninsula) and implications for back-arc magma formation. Chemical Geology 258, 207-218. https://doi.org/10.1016/j.chemgeo.2008.10.006.
Koster, E.A., Dijkmans, J.W.A. 1988. Niveo-aeolian deposits and denivation forms, with special reference to the Great Kobuk sand dunes, northwestern Alaska. Earth Surface Processes and Landforms 13 (2), 153-170. https://doi.org/10.1002/esp.3290130206.
Kovanan, D., Slaymaker, O. 2015. The paraglacial geomorphology of the Fraser Lowland, southwest British Columbia and northwest Washington. Geomorphology 232, 78-93. https://doi.org/10.1016/j.geomorph.2014.12.021.
Lancaster, N. 2002. Flux of eolian sediment in the McMurdo Dry Valleys, Antarctica: a preliminary assessment. Arctic, Antarctic, and Alpine Research 34 (3), 318-323. https://doi.org/10.1080/15230430.2002.12003500.
Lancaster, N. 2004. Relations between aerodynamic and surface roughness in a hyper-arid cold desert: McMurdo Dry Valleys, Antarctica. Earth Surface Processes and Landforms 29 (7), 853-867. https://doi.org/10.1002/esp.1073.
López-Martínez, J., Serrano, E., Schmid, T., Mink, S., Linés, C. 2012. Periglacial processes and landforms in the South Shetland Islands (northern Antarctic Peninsula region). Geomorphology 155, 62-79. https://doi.org/10.1016/j.geomorph.2011.12.018.
Marchant, D.R., Lewis, A.R., Phillips, W.M., Moore, E.J., Souchez, R.A., Denton, G.H., Sugden, D.E., Potter, N., Landis, G.P. 2002. Formation of patterned ground and sublimation till over Miocene glacier ice in Beacon Valley, southern Victoria Land, Antarctica. Geological Society of America Bulletin 114 (6), 718-730. https://doi.org/10.1130/0016-7606(2002)114<0718:FOPGAS>3.3.CO;2.
Matsuoka, N., Moriwaki, K., Hirakawa, K. 1996. Field experiments on physical weathering and wind erosion in an Antarctic cold desert. Earth Surface Processes and Landforms 21, 687-699. https://doi.org/10.1002/(SICI)1096-9837(199608)21:8<687::AID-ESP614>3.3.CO;2-A.
McGowan, H.A., Neil, D.T., Speirs, J.C. 2014. A reinterpretation of geomorphological evidence for Glacial Lake Victoria, McMurdo Dry Valleys, Antarctica. Geomorphology 208, 200-206. https://doi.org/10.1016/j.geomorph.2013.12.005.
McKenna Neuman, C. 1993. A review of aeolian transport processes in cold environments. Progress in Physical Geography: Earth and Environment 17 (2), 137-155. https://doi.org/10.1177/030913339301700203.
McKenna Neuman, C. 2004. Effects of temperature and humidity upon the transport of sedimentary particles by wind. Sedimentology 51, 1-17. https://doi.org/10.1046/j.1365-3091.2003.00604.x.
Mlčoch, B., Nývlt, D., Mixa, P., (Eds.) 2018. Geological map of James Ross Island – Northern part 1: 25,000. Czech Geological Survey, Praha.
Nelson, P.H.H. 1975. The James Ross Island Volcanic Group of North-East Graham Land. British Antarctic Survey Scientific Report 54, 62 pp.
Nývlt, D., Braucher, R., Engel, Z., Mlčoch, B., ASTER Team 2014. Timing of the Northern Prince Gustav Ice Stream retreat and the deglaciation of northern James Ross Island, Antarctic Peninsula during the last glacial-interglacial transition. Quaternary Research 82, 441-449. https://doi.org/10.1016/j.yqres.2014.05.003.
Nývlt, D., Nývltová Fišáková, M., Barták, M., Stachoň, Z., Pavel, V., Mlčoch, B., Láska, K. 2016. Death age, seasonality, taphonomy and colonization of seal carcasses from Ulu Peninsula, James Ross Island, Antarctic Peninsula. Antarctic Science 28, 3-16. https://doi.org/10.1017/S095410201500036X.
Ó Cofaigh, C., Davies, B.J., Livingstone, S.J., Smith, J.A., Johnson, J.S., Hocking, E.P., Hodgson, D.A., Anderson, J.B., Bentley, M.J., Canals, M., Domack, E., Dowdeswell, J.A., Evans, J., Glasser, N.F., Hillenbrand, C.D., Larter, R.D., Roberts, S.J., Simms, A.R. 2014. Reconstruction of ice-sheet changes in the Antarctic Peninsula since the Last Glacial Maximum. Quaternary Science Reviews 100, 87-110. https://doi.org/10.1016/j.quascirev.2014.06.023.
Oliva, M., Ruiz-Fernández, J. 2015. Coupling patterns between para-glacial and permafrost degradation responses in Antarctica. Earth Surface Processes and Landforms 40 (9), 1227-1238. https://doi.org/10.1002/esp.3716.
Oliva, M., Hrbáček, F., Ruiz-Fernández, J., de Pablo, M.A., Vieira, G., Ramos, M., Antoniades. D. 2017. Active layer dynamics in three topographically distinct lake catchments in Byers Peninsula (Livingston Island, Antarctica). Catena 149 (2), 548-559. https://doi.org/10.1016.j.catena.2016.07.011.
Olivero, E., Scasso, R.A., Rinaldi, C.A. 1986. Revision of the Marambio Group, James Ross Island, Antarctica. Instituto Antártico Argentino, Contribución 331, 28 pp.
Šabacká, M., Priscu, J.C., Basagic, H.J., Fountain, A.G., Wall, D.H., Virginia R.A., Greenwood, M.C. 2012. Aeolian flux of biotic and abiotic material in Taylor Valley, Antarctica. Geomorphology 155-156, 102-111. https://doi.org/10.1016/j.geomorph/2011.12.009.
Seehaus, T., Cook, A.J., Silva, A.B., Braun, M. 2018. Changes in glacier dynamics in the northern Antarctic Peninsula since 1985. Cryosphere 12 (2), 577-594. https://doi.org/10.5194/tc-12577-2018.
Seppälä, M. 2004. Wind as a geomorphic agent. Cambridge University Press, Cambridge, 368 pp.
Smellie, J.L., Johnson, J.S., Mcintosh, W.C., Esser, R., Gudmundsson, M.T., Hambrey, M.J., Van Wyk De Vries, B. 2008. Six million years of glacial history recorded in volcanic lithofacies of the James Ross Island Volcanic Group, Antarctic Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology 260, 122-148. https://doi.org/10.1016/j.palaeo/2007.08.011.
Smellie, J.L., Johnson, J.S., Nelson, A.E. 2013. Geological map of James Ross Island. I. James Ross Island Volcanic Group (1:125 000 Scale). BAS GEOMAP 2 Series, Sheet 5, British Antarctic Survey, Cambridge.
Smith, M.W., Riseborough, D.W. 1996. Permafrost Monitoring and Detection of Climate Change. Permafrost and Periglacial Processes 7, 301-309. https://doi.org/10.1002/(SICI)1099-1530(199610)7:4<301::AID-PPP231>3.0.CO;2R.
Speirs, J.C., McGowan, H.A., Neil, D.T. 2008. Meteorological controls on sand transport and dune morphology in a polar-desert: Victoria Valley, Antarctica. Earth Surface Processes and Landforms 33 (12), 1875-1891. https://doi.org/10.1002/esp.1739.
Thomas, D.S.G. 1997. Arid Zone Geomorphology. 2nd Edition. John Wiley & Sons, 624 pp.
Tsoar, H. 2001. Types of Aeolian Sand Dunes and Their Formation. In: N.J. Balmforth, A. Provenzale (Eds.) Geomorphological Fluid Mechanics. Lecture Notes in Physics, vol. 582. Springer, Berlin, Heidelberg.
Van Lipzig, N.P.M., King, J.C., Lachlan-Cope, T.A., van der Broeke, M.R. 2004. Precipitation, sublimation and snow drift in the Antarctic Peninsula region from a regional atmospheric model. Journal of Geophysical Research-Atmosphere 109, D24106. https://doi.org/10.1029/2004JD004701.
Wiggs, G., Baird, A., Atherton, R. 2004. The dynamic effects of moisture on the entrainment and transport of sand by wind. Geomorphology 59, 13-30. https://doi.org/10.1016/j.geomorph.2003.09.002.
Zhang, T. 2005. Influence of the seasonal snow cover on the ground thermal regime: an overview. Reviews of Geophysics 43 (4). https://doi.org/10.1029/2004RG000157.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
El autor o autora conserva todos los derechos sobre su artículo y cede a la revista el derecho de la primera publicación, no siendo necesaria la autorización de la revista para su difusión una vez publicado. Una vez publicada la versión del editor el autor está obligado a hacer referencia a ella en las versiones archivadas en los repositorios personales o institucionales.
El artículo se publicará con una licencia Creative Commons de Atribución, que permite a terceros utilizar lo publicado siempre que se mencione la autoría del trabajo y la primera publicación en esta revista.
Se recomienda a los autores/as el archivo de la versión de editor en repositorios institucionales.