Captura de niebla para uso doméstico rural y riego en la Isla San Cristóbal, Galápagos, Ecuador

Autores/as

  • P. Echeverría Department of Civil and Environmental Engineering, Escuela Politécnica Nacional
  • Ch. Domínguez Department of Civil Engineering, Universidad Politécnica Salesiana http://orcid.org/0000-0003-2971-7163
  • M. Villacís 1) Department of Civil and Environmental Engineering, Escuela Politécnica Nacional 2) Univ. Grenoble Alpes, IRD, CNRS, IGE (UMR 5001), Grenoble, France
  • S. Violette 4 Laboratoire de Géologie, École Normale Supérieure-PSL Research University, Paris, UMR 8538, France 5 Sorbonne Université - UFR.918 TEB, Paris, France

DOI:

https://doi.org/10.18172/cig.4382

Palabras clave:

Intercepción de agua de neblina, niebla, balance hidrológico, déficit de agua, Galápagos

Resumen

El archipiélago de Galápagos es una zona semiárida que carece de fuentes de agua superficiales. Debido a su posición geográfica y a la presencia de corrientes oceánicas, estas islas están cubiertas de neblina durante siete meses al año, lo que puede representar una fuente potencial de suministro de agua para la población. En este estudio, se investigó la factibilidad de la captura de niebla para uso rural y riego mediante el uso de dos colectores estándar de niebla (SFC) de 50% y 35% de coeficiente de sombra de 1 m2 y una red cilíndrica (CFN) de 0.15 m2 a 600 m de elevación en el barlovento de la isla San Cristóbal (Galápagos). La metodología aplicada consiste en la cuantificación del balance hidrológico mensual y anual a diferentes altitudes en un año promedio y en un año seco, utilizado los gradientes orográficos de precipitación, evapotranspiración e intercepción de niebla. Este último fue usado para estimar la disponibilidad de agua de niebla para satisfacer cualquier déficit hídrico. La intercepción de niebla se estimó por medio de un modelo geométrico y el uso de diferentes variables climáticas. Por otra parte, la demanda de agua en la zona rural para consumo doméstico y ganadería se estimó por el método de cuotas, mientras que la demanda de agua para agricultura se calculó a través del balance hidrológico. Los resultados muestran que la cantidad de niebla capturada alcanza los 7.9, 5.9 y 3.4 mm/d con el colector 50-SFC, 35-SFC y CFN, respectivamente. Comparando estos resultados con otros lugares alrededor del mundo, se evidenció que la captura de niebla en Galápagos supera el promedio. Un sistema de colectores de 50-SFC se diseñó a diferentes elevaciones para cubrir el 25% y el 15% del déficit de agua en el año promedio y el año seco, respectivamente.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdul-Wahab, S.A., Al-Damkhi, A.M., Al-Hinai, H., Al-Najar, K.A., and Al-Kalbani, M.S. 2010. Total fog and rainwater collection in the Dhofar region of the Sultanate of Oman during the monsoon season. Water International, 35(1), 100-109. https://doi.org/10.1080/02508060903502984.

Alpert, L. 1946. Notes on the weather and climate of Seymour Island, Galapagos Archipelago. Bulletin of the American Meteorological Society 27, 200-209.

Batisha, A. F. 2015. Feasibility and sustainability of fog harvesting. Sustainability of Water Quality and Ecology, 6, 1–10. https://doi.org/10.1016/j.swaqe.2015.01.002.

Brauman, K.A., Freyberg, D.L., Daily, G.C. 2010. Forest structure influences on rainfall partitioning and cloud interception: A comparison of native forest sites in Kona, Hawai’i. Agricultural and Forest Meteorology 150 (2), 265-275. https://doi.org/10.1016/j.agrformet.2009.11.011.

Cavelier, J., Goldstein, G. 1989. Mist and fog interception in elfin cloud forests in Colombia and Venezuela. Journal of Tropical Ecology 5 (3), 309-322. https://doi.org/10.1017/S0266467400003709.

Cereceda, P., Hernández, P., Leiva, J., Rivera, J.D. 2014. Agua de Niebla. Pontificia Universidad Católica, Santiago.

Cereceda, P., Schemenauer, R.S., Suit, M. 1992. An alternative water supply for Chilean coastal desert villages. International Journal of Water Resources Development 8 (1), 53-59. https://doi.org/10.1080/07900629208722533.

Chang Jiang Institute of Survey Planning, Design and Research (CISPDR) 2015. La Planificación de los Recursos Hídricos de las Islas Galápagos. Ecuador.

Domínguez, C. 2016. Integrated hydrogeological study of San Cristobal Island (Galápagos) (PhD Thesis). Université Pierre et Marie Curie, París.

Domínguez, C.G., García Vera, M.F., Chaumont, C., Tournebize, J., Villacís, M., d’Ozouville, N., Violette, S. 2017. Quantification of cloud water interception in the canopy vegetation from fog gauge measurements. Hydrological Processes 31 (18), 3191-3205. https://doi.org/10.1002/hyp.11228.

Estrela, M.J., Valiente, J.A., Corell, D., Millán, M.M. 2008. Fog collection in the western Mediterranean basin (Valencia region, Spain). Atmospheric Research 87 (3-4), 324-337. https://doi.org/10.1016/j.atmosres.2007.11.013.

Eugster, W., Burkard, R., Holwerda, F., Scatena, F.N., Bruijnzeel, L.S. 2006. Characteristics of fog and fogwater fluxes in a Puerto Rican elfin cloud forest. Agricultural and Forest Meteorology, 139 (3), 288-306. https://doi.org/10.1016/j.agrformet.2006.07.008.

Fessehaye, M., Abdul-Wahab, S.A., Savage, M.J., Kohler, T., Gherezghiher, T., Hurni, H. 2014. Fog-water collection for community use. Renewable and Sustainable Energy Reviews 29, 52-62. https://doi.org/10.1016/j.rser.2013.08.063.

Food and Agriculture Organization (FAO) 2006. Evapotranspiración del cultivo. Guías para la determinación de los requerimientos de agua de los cultivos. Roma.

Frumau, K.F., Burkard, R., Schmid, S., Bruijnzeel, L.A., Tobón, C., Calvo‐Alvarado, J.C. 2011. A comparison of the performance of three types of passive fog gauges under conditions of wind‐driven fog and precipitation. Hydrological Processes 25 (3), 374-383. https://doi.org/10.1002/hyp.7884.

Giambelluca, T.W., Nullet, D. 1991. Influence of the trade-wind inversion on the climate of a leeward mountain slope in Hawaii. Climate Research, 1 (3), 207-216. https://doi.org/10.3354/cr001207.

Gunn, R., Kinzer, G.D. 1949. The terminal velocity of fall for water droplets in stagnant air. Journal of Meteorology 6 (4), 243-248. https://doi.org/10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2.

Herwitz, S.R., Slye, R.E. 1995. Three-dimensional modeling of canopy tree interception of wind-driven rainfall. Journal of Hydrology, 168 (1), 205-226. https://doi.org/10.1016/0022-1694(94)02643-P.

Holwerda, F., Burkard, R., Eugster, W., Scatena, F.N., Meesters, A., Bruijnzeel, L.A. 2006. Estimating fog deposition at a Puerto Rican elfin cloud forest site: comparison of the water budget and eddy covariance methods. Hydrological Processes 20 (13), 2669-2692. https://doi.org/10.1002/hyp.6065.

Instituto Nacional de Estadísticas y Censos (INEC) 2010. Available at: http://www.ecuadorencifras.gob.ec/sistema-integrado-de-consultas-redatam/ (last access: 11/06/2019).

Juvik, J.O., Ekern, P.C. 1978. A climatology of mountain fog on Mauna Loa, Hawaii Island. Available from the National Technical Information Service, Springfield VA 22161 as PB 80-118805. Price Codes: A 04 in Paper Copy, A 01 in Microfiche. Technical Report, 118.

Klemm, O., Schemenauer, R.S., Lummerich, A., Cereceda, P., Marzol, V., Corell, D., Fessehaye, G.M. 2012. Fog as a Fresh-Water Resource: Overview and Perspectives. Ambio 41 (3), 221-234. https://doi.org/10.1007/s13280-012-0247-8.

Laws, J.O., Parsons, D.A. 1943. The relation of raindrop‐size to intensity. Eos, Transactions of the American Geophysical Union 24 (2), 452-460.

Olivier, J. 2002. Fog-water harvesting along the West Coast of South Africa: A feasibility study. Water SA, 28 (4), 349-360. https://doi.org/10.4314/wsa.v28i4.4908.

Pryet, A., Dominguez, C., Tomai, P. F., Chaumont, C., d’Ozouville, N., Villacís, M., Violette, S. 2012. Quantification of cloud water interception along the windward slope of Santa Cruz Island, Galapagos (Ecuador). Agricultural and Forest Meteorology 161, 94-106. https://doi.org/10.1016/j.agrformet.2012.03.018.

Regalado, C.M., Ritter, A. 2017. The performance of three fog gauges under field conditions and its relationship with meteorological variables in an exposed site in Tenerife (Canary Islands). Agricultural and Forest Meteorology 233, 80-91. https://doi.org/10.1016/j.agrformet.2016.11.009

Ritter, A., Regalado, C. M., Aschan, G. 2008. Fog Water Collection in a Subtropical Elfin Laurel Forest of the Garajonay National Park (Canary Islands): A Combined Approach Using Artificial Fog Catchers and a Physically Based Impaction Model. Journal of Hydrometeorology 9 (5), 920-935. https://doi.org/10.1175/2008JHM992.1.

Ritter, A., Regalado, C.M., Guerra, J.C. 2015. Quantification of Fog Water Collection in Three Locations of Tenerife (Canary Islands). Water 7 (7), 3306-3319. https://doi.org/10.3390/w7073306.

Rivera, J.D. 2011. Aerodynamic collection efficiency of fog water collectors. Atmospheric Research 102 (3), 335-342. https://doi.org/10.1016/j.atmosres.2011.08.005.

Sachs, J.P., Sachse, D., Smittenberg, R.H., Zhang, Z., Battisti, D.S., Golubic, S. 2009. Southward movement of the Pacific intertropical convergence zone AD[thinsp]1400-1850. Nature Geoscience 2 (7), 519-525. https://doi.org/10.1038/ngeo554.

Schemenauer, R.S., Cereceda, P. 1994a. A Proposed Standard Fog Collector for Use in High-Elevation Regions. Journal of Applied Meteorology 33 (11), 1313-1322. https://doi.org/10.1175/1520-0450(1994)033<1313:APSFCF>2.0.CO;2.

Schemenauer, R.S., Cereceda, P. 1994b. Fog collection’s role in water planning for developing countries. Natural Resources Forum 18, 91-100. Wiley Online Library.

Schemenauer, R.S., Joe, P.I. 1989. The collection efficiency of a massive fog collector. Atmospheric Research 24 (1), 53-69. https://doi.org/10.1016/0169-8095(89)90036-7.

Sicart, J.E., Hock, R., Six, D. 2008. Glacier melt, air temperature, and energy balance in different climates: The Bolivian Tropics, the French Alps, and northern Sweden. Journal of Geophysical Research: Atmospheres 113 (D24). https://doi.org/10.1029/2008JD010406.

Trueman, M., d’Ozouville, N. 2010. Characterizing the Galapagos terrestrial climate in the face of global climate change. Galapagos Research 67, 26-37. http://aquaticcommons.org/id/eprint/21473.

Villegas, J.C., Tobón, C., Breshears, D.D. 2008. Fog interception by non-vascular epiphytes in tropical montane cloud forests: dependencies on gauge type and meteorological conditions. Hydrological Processes, 22 (14), 2484-2492. https://doi.org/10.1002/hyp.6844.

Violette, S., d’Ozouville, N., Pryet, A., Deffontaines, B., Fortin, J., Adelinet, M. 2014. Hydrogeology of the Galapagos Archipelago: an integrated and comparative approach between islands. In: K.S. Harpp, E., Mittelstaedt, N. d’Ozouville, D.W. Graham, The Galapagos: A Natural Laboratory for the Earth Sciences. AGU Advancing Earth and Space Science, 204, 167. https://doi.org/10.1002/97811188552538.ch9.

Vogelmann, H.W. 1973. Fog Precipitation in the Cloud Forests of Eastern Mexico. BioScience 23 (2), 96-100. https://doi.org/10.2307/1296569.

Descargas

Publicado

2020-09-15

Cómo citar

1.
Echeverría P, Domínguez C, Villacís M, Violette S. Captura de niebla para uso doméstico rural y riego en la Isla San Cristóbal, Galápagos, Ecuador. CIG [Internet]. 15 de septiembre de 2020 [citado 16 de abril de 2025];46(2):563-80. Disponible en: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/4382

Número

Sección

Artículos