Diferencias espacio temporales de la tasa de acumulación de sedimentos en el lago Gościąż (Polonia central) como respuesta a las condiciones meteorológicas y a la morfometría del lago
DOI:
https://doi.org/10.18172/cig.4724Palabras clave:
Morfometría lacustre, lago dimíctico, resuspensión de sedimentos, tasa de acumulación de sedimento, seguimiento hidrometeorológicoResumen
Las condiciones meteorológicas y la morfometría de la cuenca son clave en el estudio de las tasas de sedimentación en lagos. Este trabajo tiene como objetivo analizar cómo estos factores afectan a las variaciones espaciales y estacionales de la tasa de sedimentación en el epilimnion y el hipolimnion del lago Gościąż. Para determinar las tasas de sedimentación, se instalaron seis trampas de sedimentos en diferentes localizaciones dentro del lago y a diferentes profundidades. Los datos meteorológicos se obtuvieron de una estación próxima al lago. Además, se midió de manera constante la temperatura de la columna de agua y, durante campañas de campo, su grado de oxigenación y transparencia. Se analizaron cambios estacionales en la composición del sedimento mediante frotis para microscopio. El estudio indica que la tasa de sedimentación incrementó conforme la pendiente del fondo del lago aumentaba, y que había más sedimento en el hipolimnion que en el epilimnion, especialmente en verano y en otoño. Se observó una clara variación estacional en los picos de sedimentación al principio de la primavera y en otoño. Los resultados dependieron significativamente del relieve del fondo del lago, del viento y de la temperatura del aire, que a su vez influenciaron la temperatura del agua. Los resultados muestran que la acumulación de sedimento en el Lago Gościąż depende de las condiciones hidrodinámicas, las cuales están determinadas por la velocidad y dirección del viento, la temperatura del agua y la pendiente del fondo del lago. Las características del relieve del fondo del lago y su orientación relativa a los vientos predominantes son factores significativos que explican la diferenciación espacial de la tasa de sedimentación y la composición del material sedimentado. Las zonas someras del lago (litorales y sublitorales) son una fuente importante de sedimento del material acumulado en la zona profunda. Los patrones y mecanismos de la sedimentación contemporánea del lago Gościąż, definidos en este trabajo pueden ser aplicados al estudio de otros lagos, así como en la evaluación de la representatividad de sitios de muestreo para sedimentos laminados en estudios paleoambientales.
Descargas
Citas
Anderson, R.Y., Dean, W.E. 1988. Lacustrine varve formation through time. Palaeogeography, Palaeoclimatology, Palaeoecology 62 (1-4), 215-235. https://doi.org/10.1016/0031-0182(88)90055-7
Bartczak, A., Słowińska, S., Tyszkowski, S., Kramkowski, M., Kaczmarek, H., Kordowski, J., Słowiński, M. 2019. Ecohydrological changes and resilience of a shallow lake ecosystem under intense human pressure and recent climate change. Water 11 (1), 32. https://doi.org/10.3390/w11010032
Bechtel, A., Woszczyk, M., Reischenbacher, D., Sachsenhofer, R.F., Gratzer, R., Püttmann, W., Spychalski, W. 2007. Biomarkers and geochemical indicators of Holocene environmental changes in coastal Lake Sarbsko (Poland). Organic Geochemistry 38 (7), 1112-1131. https://doi.org/10.1016/j.orggeochem.2007.02.009
Bennett, K.D., Buck, C.E. 2016. Interpretation of lake sediment accumulation rates. The Holocene 26 (7), 1092-1102. https://doi.org/10.1177/0959683616632880
Blais, J.M., Kalff, J. 1995. The influence of lake morphometry on sediment focusing. Limnology and Oceanography 40 (3), 582-588. https://doi.org/10.4319/lo.1995.40.3.0582
Bloesch, J., Uehlinger, U. 1986. Horizontal sedimentation differences in a eutrophic Swiss lake. Limnology and Oceanography 31 (5), 1094-1109. https://doi.org/10.4319/lo.1986.31.5.1094
Bluszcz, P., Kirilova, E., Lotter, A.F., Ohlendorf, C., Zolitschka, B. 2008. Global radiation and onset of stratification as forcing factors of seasonal carbonate and organic matter flux dynamics in a hypertrophic hardwater lake (Sacrower See, Northeastern Germany). Aquatic Geochemistry 14 (1): 73-98. https://doi.org/10.1007/s10498-008-9026-3
Boegman, L. 2009. Currents in stratified water bodies 2: Internal waves. In: G.E. Likens, (Ed.) Encyclopedia of Inland Waters. Volume 1. Elsevier, Oxford, pp. 539-558.
Bonhomme, C., Poulin, M., Vinçon-Leite, B., Saad, M., Groleau, A., Jézéquel, D., Tassin, B. 2011. Maintaining meromixis in Lake Pavin (Auvergne, France): The key role of a sublacustrine spring. Comptes Rendus Geoscience 343 (11-12), 749-759. https://doi.org/10.1016/j.crte.2011.09.006
Bonk, A., Tylmann, W., Amann, B.J.F., Enters, D., Grosjean, M. 2015. Modern limnology and varve-formation processes in Lake Żabińskie, northeastern Poland: comprehensive process studies as a key to understand the sediment record. Journal of Limnology 74 (2), 358-370. https://doi.org/10.4081/jlimnol.2014.1117
Bonk, A., Kinder, M., Enters, D., Grosjean, M., Meyer-Jacob, C., Tylmann, W. 2016. Sedimentological and geochemical responses of Lake Żabińskie (north-eastern Poland) to erosion changes during the last millennium. Journal of Paleolimnology 56 (2-3), 239-252. https://doi.org/10.1007/s10933-016-9910-6
Bonk, A., Müller, D., Ramisch, A., Kramkowski, M., Noryśkiewicz, A.M., Sekudewicz, I., Gąsiorowski, M., Luberda-Durnaś, K., Słowiński, M., Schwab, M., Tjallingii, R., Brauer, A., Błaszkiewicz, M. 2021. Varve microfacies and chronology from a new sediment record of Lake Gościąż (Poland). Quaternary Science Review 251, 106715. https://doi.org/10.1016/j.quascirev.2020.106715
Botwe, B.O., Abril, J.M., Schirone, A., Barsanti, M., Delbono, I., Delfanti, R., Nyarko, E., Lens, P.N.L. 2017. Settling fluxes and sediment accumulation rates by the combined use of sediment traps and sediment cores in Tema Harbour (Ghana). Science of the Total Environment 609, 1114-1125. https://doi.org/10.1016/j.scitotenv.2017.07.139
Bouffard, D., Boegman, L., Ackerman, J.D., Valipour, R., Rao, Y.R. 2014. Near-inertial wave driven dissolved oxygen transfer through the thermocline of a large lake. Journal of Great Lakes Research 40 (2), 300-307. https://doi.org/10.1016/j.jglr.2014.03.014
Choiński, A., Ptak, M., Skowron, R., Strzelczak, A. 2015. Changes in ice phenology on polish lakes from 1961 to 2010 related to location and morphometry. Limnologica 53, 42-49. https://doi.org/10.1016/j.limno.2015.05.005
Churski, Z., Marszelewski, W. 1998. Hydrology and sedimentation conditions in Lake Gościąż. In: M. Ralska-Jasiewiczowa (Ed.), Lake Gościąż, Central Poland: A Monographic Study, Part 1. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, pp. 39-45.
Cohen, A.S. 2003. Paleolimnology: the history and evolution of lake systems. Oxford University Press, Oxford, 528 pp.
Dearing, J.A. 1997. Sedimentary indicators of lake-level changes in the humid temperate zone: a critical review. Journal of Paleolimnology 18 (1), 1-14. https://doi.org/10.1023/A:1007916210820
Demidowicz, G., Deputat, T., Górski, A., Zaliwski, E., Wróblewska, E. 1998. Numerical map of length of vegetation period. IUNG, Puławy. http://www.zazi.iung.pulawy.pl/Images/Maps/dl_oweg.jpg Accessed 12 Jul 2019.
Filatov, N., Terzevik, A., Zdorovennov, R., Vlasenko, V., Stashchuk, N., Hutter, K. 2012. Field Studies of Non-Linear Internal Waves in Lakes on the Globe. In: K. Hutter (Ed.), Nonlinear internal waves in lakes. Springer, Berlin, Heidelberg, pp. 23-103. https://doi.org/10.1007/978-3-642-23438-5_2
Flower, R.J. 1990. Seasonal changes in sedimenting material collected by high aspect ratio sediment traps operated in a holomictic eutrophic lake. In: J.P. Smith, P.G. Appleby, R.W. Battarbee, J.A. Dearing, R. Flower, E.Y. Haworth, F. Oldfield, P.E. O’Sullivan (Eds.), Environmental History and Palaeolimnology. Springer, Dordrecht, pp. 311-316. https://doi.org/10.1007/978-94-011-3592-4_40
Gasith, A. 1976. Seston dynamics and tripton sedimentation in the pelagic zone of a shallow eutrophic lake. Hydrobiologia 51 (3), 225-231. https://doi.org/10.1007/BF00005748
Gierszewski, P. 2000. Charakterystyka środowiska hydrochemicznego wód powierzchniowych zachodniej części Kotliny Płockiej. Prace Geograficzne, 176, Instytut Geografii i Przestrzennego Zagospodarowania PAN, Warszawa, 136 pp.
Gierszewski, P. 2001. Variability of the concentration of chemical substances in the Ruda river-lake system (Płock Basin). Limnological Review 1, 83-93.
Giziński, A., Kentzer, A., Mieszczankin, T., Żbikowski, J., Żytkowicz, R. 1998. Hydrobiological characteristics and modern sedimentation of Lake Gościąż. In: M. Ralska-Jasiewiczowa (Ed.), Lake Gościąż, Central Poland: A Monographic Study, Part 1. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, pp. 49-60.
Glazik, R. 1978. Wpływ zbiornika wodnego na Wiśle we Włocławku na zmiany stosunków wodnych w dolinie. Dokumentacja Geograficzna, 2-3, Instytut Geografii i Przestrzennego Zagospodarowania PAN, Warszawa, 119 pp.
Goslar, T., Kuc, T., Ralska-Jasiewiczowa, M., Różański, K., Arnold, M., Bard, E., van Geel, B., Pazdur, M.F., Szeroczyńska, K., Wicik, B., Więckowski, K., Walanus, A. 1993. High – resolution lacustrine record of the Late Glacial/Holocene transition in central Europe. Quaternary Science Review 12 (5), 287-294. https://doi.org/10.1016/0277-3791(93)90037-M
Graham, N.D., Bouffard, D., Loizeau, J.L. 2016. The influence of bottom boundary layer hydrodynamics on sediment focusing in a contaminated bay. Environmental Science and Pollution Research 23 (24), 25412-25426. https://doi.org/10.1007/s11356-016-7715-9
Groleau, A., Sarazin, G., Vinçon-Leite, B., Tassin, B., Quiblier-Llobreas, C. 2000. Tracing calcite precipitation with specific conductance in a hard water alpine lake (Lake Bourget). Water Research 34 (17), 4151-4160. https://doi.org/10.1016/S0043-1354(00)00191-3
Heiri, O., Lotter, A.F., Lemcke, G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25, 101-110. https://doi.org/10.1023/A:1008119611481
Horppila, J., Niemistö, J. 2008. Horizontal and vertical variations in sedimentation and resuspension rates in a stratifying lake – effects of internal seiches. Sedimentology 55 (5), 1135-1144. https://doi.org/10.1111/j.1365-3091.2007.00939.x
Johansson, M., Saarni, S., Sorvari, J. 2019. Ultra-high-resolution monitoring of the catchment response to changing weather conditions using online sediment trapping. Quaternary 2 (2), 18. https://doi.org/10.3390/quat2020018
Kaal, J., Cortizas, A.M., Rydberg, J., Bigler, C. 2015. Seasonal changes in molecular composition of organic matter in lake sediment trap material from Nylandssjön, Sweden. Organic Geochemistry 83-84, 253-262. https://doi.org/10.1016/j.orggeochem.2015.04.005
Kentzer, A., Żytkowicz, R. 1993. Warunki formowania współczesnych osadów dennych w jeziorze Gościąż. Polish Botanical Studies.Guidebook Series 8, 39-48.
Kępczyński, K., Noryśkiewicz, A. 1993. Współczesna szata roślinna kompleksu jezior ‘Na Jazach’. Polish Botanical Studies. Guidebook Series 8, 29-38.
Kępczyński, K., Noryśkiewicz, A. 1998. Vegetation of the Gostynińskie Lake District. In: M. Ralska-Jasiewiczowa (Ed.), Lake Gościąż, Central Poland: A Monographic Study, Part 1. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, pp. 29-33.
Kienel, U., Dulski, P., Ott, F., Lorenz, S., Brauer, A. 2013. Recently induced anoxia leading to the preservation of seasonal laminae in two NE-German lakes. Journal of Paleolimnology 50 (4), 535-544. https://doi.org/10.1007/s10933-013-9745-3
Kienel, U., Kirillin, G., Brademann, B., Plessen, B., Lampe, R., Brauer, A. 2017. Effects of spring warming and mixing duration on diatom deposition in deep Tiefer See, NE Germany. Journal of Paleolimnology 57 (1), 37-49. https://doi.org/10.1007/s10933-016-9925-z
Kruczkowska, B., Błaszkiewicz, M., Jonczak, J., Uzarowicz, Ł., Moska, P., Brauer, A., Bonk, A., Słowiński, M. 2020. The Late Glacial pedogenesis interrupted by aeolian activity in Central Poland – Records from the Lake Gościąż catchment. Catena 185, 104286. https://doi.org/10.1016/j.catena.2019.104286
Lastein, E. 1976. Recent sedimentation and resuspension of organic matter in eutrophic Lake Esrom, Denmark. Oikos 27 (1), 44-49. https://www.jstor.org/stable/3543430
Leemann, A., Niessen, F. 1994. Varve formation and the climatic record in an Alpine proglacial lake: calibrating annually-laminated sediments against hydrological and meteorological data. The Holocene 4 (1), 1-8. https://doi.org/10.1177/095968369400400101
Lewis, T., Gilbert, R., Lamoureux, S.F. 2002. Spatial and temporal changes in sedimentary processes at proglacial Bear Lake, Devon Island, Nunavut, Canada. Arctic, Antarctic and Alpine Research 34 (2), 119-129.
Lopez, P., Lopez-Tarazon, J.A., Casas-Ruiz, J.P., Pompeo, M., Ordonez, J., Munoz, I. 2016. Sediment size distribution and composition in a reservoir affected by severe water level fluctuations. Science of the Total Environment 540, 158-167. https://doi.org/10.1016/j.scitotenv.2015.06.033
Lotter, A.F., Birks, H.J.B. 1997. The separation of the influence of nutrients and climate on the varve time-series of Baldeggersee, Switzerland. Aquatic Sciences 59 (4), 362-375. https://doi.org/10.1007/BF02522364
Löffler, H, 2004. The origin of lake basins. In: P.E. O'Sullivan, C.S. Reynolds, (Eds.), The lakes handbook, Volume 1: Limnology and Limnetic Ecology. Wiley, New York, pp. 8-60.
Maier, D.B., Gälman, V., Renberg, I., Bigler, C. 2018. Using a decadal diatom sediment trap record to unravel seasonal processes important for the formation of the sedimentary diatom signal. Journal of Paleolimnology 60 (2), 133-152. https://doi.org/10.1007/s10933-018-0020-5
Mieszczankin, T. 1997. A spacio-temporal pattern of pollen sedimentation in a dimictic lake with laminated sediments. Water, Air, and Soil Pollution 99, 587-592. https://doi.org/10.1007/BF02406897
Mieszczankin, T., Noryśkiewicz, B. 2000. Processes that can disturb the chronostratigraphy of laminated sediments and pollen deposition. Journal of Paleolimnology 23 (2), 129-140. https://doi.org/10.1023/A:1008074701468
Mieszczankin, T. 2004. Procesy sedymentacji tryptonu w jeziorze Gościąż – warunki formowania współczesnych osadów dennych oraz rola tryptonu w transformacji i kumulacji fosforu. In: B. Głogowska, A. Kentzer (Eds.), Hydrobiologia toruńska: monografia dorobku prac doktorskich Zakładu Hydrobiologii w latach 1978-2003. Toruń, pp. 117-127.
Moore, J.J., Hughen, K.A., Miller, G.H., Overpeck, J.T. 2001. Little Ice Age recorded in summer temperature reconstruction from varved sediments of Donard Lake, Baffin Island, Canada. Journal of Paleolimnology 25 (4), 503-517. https://doi.org/10.1023/A:1011181301514
Müller, D., Tjallingii, R., Płóciennik, M., Luoto, T.P., Kotrys, B., Plessen, B., Ramisch, A., Schwab, M.J., Błaszkiewicz, M., Słowiński, M., Brauer, A. [in press]. New insights into lake responses to rapid climate change: The Younger Dryas in Lake Gościąż, Central Poland. Boreas
O’Sullivan, P.E. 1983. Annually laminated lake sediments and the study of Quaternary environmental changes – a review. Quaternary Science Review 1 (4), 245-313. https://doi.org/10.1016/0277-3791(83)90008-2
Ojala, A.E.K., Heinsalu, A., Kauppila, T., Alenius, T., Saarnisto, M. 2008. Characterizing changes in the sedimentary record in southern central Finland around 8000 cal. yr BP. Journal of Quaternary Science 23 (8), 765-775. https://doi.org/10.1002/jqs.1157
Ojala, A.E.K., Francus, P., Zolitschka, B., Besonen, M., Lamoureux, S.F. 2012. Characteristics of sedimentary varve chronologies – a review. Quaternary Science Review 43, 45-60. https://doi.org/10.1016/j.quascirev.2012.04.006
Ojala, A.E.K., Bigler, C., Weckström, J. 2014. Understanding varved formation processes from sediment trapping and limnological monitoring. Past Global Changes Magazine 22 (1), 8-9. https://doi.org/10.22498/pages.22.1.8
Ott, F., Dräger, N., Brykała, D., Kienel, U., Gierszewski, P., Plessen, B., Schwab, M.J., Brademann, B., Pinkerneil, S., Słowiński, M., Błaszkiewicz, M., Brauer, A. 2017. Deciphering varve formation in Lake Czechowskie (N Poland) and Lake Tiefer See (NE Germany) through comprehensive lake monitoring. In: M.J. Schwab, M. Błaszkiewicz, T. Raab, M. Wilmking, A. Brauer (Eds.) ICLEA Final Symposium 2017. Climate Change, Human Impact and Landscape Evolution in the Southern Baltic Lowlands. Abstract Volume & Excursion Guide. Scientific Technical Report STR17/03. Potsdam, pp. 132-134.
Ott, F., Kramkowski, M., Wulf, S., Plessen, B., Serb, J., Tjallingii, R., Schwab, M., Słowiński, M., Brykała, D., Tyszkowski, S., Putyrskaya, V., Appelt, O., Błaszkiewicz, M., Brauer, A. 2018. Site-specific sediment responses to climate change during the last 140 years in three varved lakes in Northern Poland. The Holocene 28 (3), 464-477. https://doi.org/10.1177/0959683617729448
Pace, M.L., Lovett, G.M. 2013. Primary production: the foundation of ecosystems. In: K. Weathers, D. Strayer, G. Likens (Eds.), Fundamentals of ecosystem science. Academic Press, pp. 27-51.
Pannard, A., Beisner, B.E., Bird, D.F., Braun, J., Planas, D., Bormans, M. 2011. Recurrent internal waves in a small lake: Potential ecological consequences for metalimnetic phytoplankton populations. Limnology and Oceanography 1 (1), 91-109. https://doi.org/10.1215/21573698-1303296
Peel, M.C., Finalyson, B.L., Mcmahon, T.A. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Science 11 (5), 1633-1644. https://doi.org/10.5194/hess-11-1633-2007
Petterson, G., Renberg, I., Geladi, P., Lindberg, A., Lindgren, A. 1993. Spatial uniformity of sediment accumulation in varved lake sediments in northern Sweden. Journal of Paleolimnology 9 (3), 195-208. https://doi.org/10.1007/BF00677213
Punning, J.M., Alliksaar, T., Terasmaa, J., Jevrejeva, S. 2004. Recent patterns of sediment accumulation in a small closed eutrophic lake revealed by the sediment records. Hydrobiologia 529 (1-3), 71-81. https://doi.org/10.1007/s10750-004-4948-2
Ralska-Jasiewiczowa, M., Goslar, T., Madeyska, T., Starkel, L. (Eds.). 1998. Lake Gościąż, Central Poland: A Monographic Study, Part 1. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, 340 pp.
Ruttner, F, 1963. Fundamentals of Limnology. University of Toronto, Toronto, 295 pp.
Rychel, J., Błaszkiewicz, M., Brykała, D., Gierszewski, P., Lisicki, S., Roman, M., Tyszkowski, S. 2014, Mapa geologiczno-turystyczna Gostynińsko-Włocławskiego Parku Krajobrazowego. Państwowy Instytut Geologiczny - PIB, Instytut Geografii i Przestrzennego Zagospodarowania PAN, Uniwersytet Łódzki, Warszawa.
Rychel, J., Woronko, B., Błaszkiewicz, M., Karasiewicz, T. 2018. Aeolian processes records within last glacial limit areas based on the Płock Basin case (Central Poland). Bulletin of the Geological Society of Finland 90 (2), 223-237. https://doi.org/10.17741/bgsf/90.2.007
Salminen, S., Saarni, S., Tammelin, M., Fukmoto, Y., Saarinen, T. 2019. Varve distribution reveals spatiotemporal hypolimnetic hypoxia oscillations during the past 200 years in Lake Lehmilampi, Eastern Finland. Quaternary 2 (2), 20. https://doi.org/10.3390/quat2020020
Schaller, T., Moor, H.C., Wehrli, B. 1997. Sedimentary profiles of Fe, Mn, V, Cr, As and Mo as indicators of benthic redox conditions in Baldeggersee. Aquatic Sciences 59 (4), 345-361. https://doi.org/10.1007/BF02522363
Schettler, G., Liu, Q., Mingram, J., Stebich, M., Dulski, P. 2006. East – Asian monsoon variability between 15,000 and 2000 cal. yr BP recorded in varved sediments of Lake Sihailongwan (northeastern China, Long Gang volcanic field). The Holocene 16 (8), 1043-1057. https://doi.org/10.1177/0959683606069388
Schiefer, E., Gilbert, R. 2008. Proglacial sediment trapping in recently formed Silt Lake, upper Lillooet Valley, Coast Mountains, British Columbia. Earth Surface Processes and Landforms 33 (10), 1542-1556. https://doi.org/10.1002/esp.1625
Schnurrenberger, D., Russell, J., Kelts, K. 2003. Classification of lacustrine sediments based on sedimentary components. Journal of Paleolimnology 29 (2), 141-154.
Segerström, U., Renberg, I., Wallin, J.E. 1984. Annual sediment accumulation and land use history; investigations of varved lake sediments: With 7 figures in the text. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen 22 (3), 1396-1403. https://doi.org/10.1080/03680770.1983.11897507
Skompski, S. 1969. Stratygrafia osadów czwartorzędowych wschodniej części Kotliny Płockiej. Biuletyn Instytutu Geologicznego 220, 175-258.
Terasmaa, J. 2005. Bottom topography and sediment lithology in two small lakes in Estonia. Proceedings of the Estonian Academy of Sciences. Biology. Ecology 54 (3), 171-189.
Thorpe, S.A., Jiang, R. 1998. Estimating internal waves and diapycnal mixing from conventional mooring data in a lake. Limnology and Oceanography 43 (5), 936-945. https://doi.org/10.4319/lo.1998.43.5.0936
Tylmann, W. 2011. Jeziorne osady rocznie laminowane w północnej Polsce: aktualny stan rozpoznania, postępy metodyczne i perspektywy badawcze. Studia Limnologica et Telmatologica 5 (1), 23-41.
Tylmann, W., Szpakowska, K., Ohlendorf, C., Woszczyk, M., Zolitschka, B. 2012. Conditions for deposition of annually laminated sediments in small meromictic lakes: a case study of Lake Suminko (northern Poland). Journal of Paleolimnology 47 (1), 55-70. https://doi.org/10.1007/s10933-011-9548-3
Urbaniak, U. 1966. Skład mineralny piasków wydmowych w Kotlinie Płockiej. Przegląd Geograficzny 38 (3), 435-453.
Valerio, G., Pilotti, M,. Lau, M.P, Hupfer, M. 2019. Oxycline oscillations induced by internal waves in deep Lake Iseo. Hydrology and Earth System Sciences 23 (3), 1763-1777. https://doi.org/10.5194/hess-23-1763-2019
Vos, H., Sanchez, A., Zolitschka, B., Brauer, A., Negedank, J.F.W. 1997. Solar activity variations recorded in varved sediments from the crater Lake of Holzmaar – a maar lake in the Westeifel volcanic field, Germany. Surveys in Geophysics 18 (2-3), 163-182. https://doi.org/10.1023/A:1006531825130
Wetzel, R.G., Rich, P.H., Miller, M.C., Allen, H.L. 1972. Metabolism of dissolved and particulate detrital carbon in a temperate hard water lake. Michigan State University, Hickory Corners, 109 pp. https://doi.org/10.2172/4614952
Wiśniewski, E. 1976. Rozwój geomorfologiczny doliny Wisły pomiędzy Kotliną Płocką a Kotliną Toruńską. Prace Geograficzne, 119, Instytut Geografii i Przestrzennego Zagospodarowania PAN, Warszawa, 124 pp.
Woszczyk, M., Cieślinski, R., Spychalski, W. 2009. Geochemistry of surface sediments of a costal Lake Sarbsko (Northern Poland). Studia Quaternaria, 26, 41-53.
Woś, A. 1999. Klimat Polski. Wydawnictwo Naukowe PWN, Warszawa, 301 pp.
Zolitschka, B., Francus, P., Ojala, A.E.K., Schimmelmann, A. 2015. Varves in lake sediments – a review. Quaternary Science Review 117, 1-41. https://doi.org/10.1016/j.quascirev.2015.03.019
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
El autor o autora conserva todos los derechos sobre su artículo y cede a la revista el derecho de la primera publicación, no siendo necesaria la autorización de la revista para su difusión una vez publicado. Una vez publicada la versión del editor el autor está obligado a hacer referencia a ella en las versiones archivadas en los repositorios personales o institucionales.
El artículo se publicará con una licencia Creative Commons de Atribución, que permite a terceros utilizar lo publicado siempre que se mencione la autoría del trabajo y la primera publicación en esta revista.
Se recomienda a los autores/as el archivo de la versión de editor en repositorios institucionales.