Árboles como indicadores de la contaminación metálica inducida por la minería a lo largo del río Odiel (sur de la Península Ibérica)
DOI:
https://doi.org/10.18172/cig.4740Palabras clave:
anillos de crecimiento, inundaciones, geomorfología fluvial, dendroquímica, elementos metálicos, contaminación, río OdielResumen
La actividad minera es responsable de vertidos de aguas enriquecidas con ácidos y metales. La liberación de metales es especialmente preocupante debido a su toxicidad y persistencia en los ecosistemas. La detección y delimitación sistemática de zonas contaminadas en la llanura de inundación puede contribuir a una mejor gestión de dichas zonas en relación con el ciclo hidrológico. En este trabajo se analiza si los árboles, que crecen en diferentes posiciones geomorfológicas, registran la absorción de metales durante eventos de inundaciones. Para ello, se aplicaron análisis dendroquímicos a veinticinco ejemplares de la especie Pinus pinaster Ait. que crecen en las orillas del río Odiel (suroeste de España). También se analizaron cinco árboles de referencia que crecen alejados del cauce del río. Los árboles fueron muestreados con una barrena de Pressler (diámetro 1 cm) y las muestras fueron dendrocronológicamente fechadas, aislando bloques de 5 años que coincidían con eventos de inundaciones. Las concentraciones de metales tóxicos en muestras de árboles se midieron en dichos bloques mediante espectrometría de masas de plasma (ICPM). Los resultados revelan una clara correlación entre la acumulación de metales tóxicos y la ubicación geomorfológica de los árboles. La absorción de elementos metálicos fue mucho mayor en los árboles ubicados en el banco de orilla que en los árboles que crecen en las barras de sedimentos. Por otro lado, en los árboles más alejados del canal principal del río solo detectamos señales químicas después de las mayores inundaciones, pero no después de eventos más pequeños. Concluimos que la posición del árbol condiciona la señal dendroquímica asociada a procesos fluviales, aunque todavía se requieren más estudios para discernir los vínculos con eventos de inundaciones.Descargas
Citas
Aguirre, J.A.M., Sánchez, J.C.R., Arce, P.J. S. 2003. Avenidas torrenciales en el Arroyo del Partido y su incidencia en la Marisma del Parque Nacional de Doñana. Organismo Autónomo Parques Nacionales, Madrid.
Ali, H., Khan, E. Ilahi, I. 2019. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. Journal of Chemical, 6730305. https://doi.org/10.1155/2019/6730305.
Alpers, C.N., Nordstrom, D.K., Spitzley, J. 2003. Extreme acid mine drainage from a pyritic massive sulfide deposit: The Iron Mountain endmember. In: J.L. Jambor, D.W. Blowes, A.I.M. Ritchie (Eds.). Environmental Aspects of Mine-Wastes. Mineralogical Association of Canada, pp. 407-430.
Augustin, S., Stephanowitz, H., Wolff, B., Schröder, J., Hoffmann, E. 2005. Manganese in Tree Rings of Norway Spruce as an Indicator for Soil Chemical Changes in the Past. European Journal of Forest Research 124 (4), 313-318. https://doi.org/10.1007/s10342-005-0084-4.
Ballesteros-Cánovas, J.A., Stoffel, M., St George, S., Hirschboeck, K. 2015. A review of flood records from tree rings. Progress in Physical Geography 39 (6) 794-816. https://doi.org/10.1177/0309133315608758.
Ballesteros-Cánovas, J.A., Stoffel, M., Benito, G., Rohrer, M., Barriopedro, D., García-Herrera, R., Beniston, M., Brönnimann, S. 2018. On the extraordinary winter flood episode over the North Atlantic Basin in 1936. Annals of the New York Academy of Sciences 1436, 206-216. https://doi.org/10.1111/nyas.13911.
Ballesteros-Cánovas, J.A., Stoffel, M., Martín-Duque, J.F., Corona, C., Lucía, A., Bodoque, J.M., Montgomery, D.R. 2017. Gully evolution and geomorphic adjustments of badlands to reforestation. Scientific Reports 7, 45027.
Balouet, J.C., Smith, K.T., Vroblesky, D., Oudijk, G. 2009. Use of dendrochronology and dendrochemistry in environmental forensics: does it meet the Daubert criteria? Environmental Forensics 10 (4), 268-276. https://doi.org/10.1080/ 15275920903347545.
Banchirigah, S.M. 2008. Challenges with eradicating illegal mining in Ghana: A perspective from the grassroots. Resources Policy 33(1), 29-38. https://doi.org/10.1016/ j.resourpol.2007.11.001.
Benito, G., Machado, M.J., Pérez-González, A. 1996. Climate change and flood sensitivity in Spain. Geological Society, London, Special Publications, 115(1), 85-98. https://doi.org/10.1144/GSL.SP.1996.115.01.08.
Bing, H., Wu, Y., Zhou, J., Li, R., Wang, J. 2016. Historical trends of anthropogenic metals in Eastern Tibetan Plateau as reconstructed from alpine lake sediments over the last century. Chemosphere 148, 211-219. https://doi.org/10.1016/j.chemosphere.2016.01.042.
Borrego, J. 1992. Sedimentología del estuario del Río Odiel, Huelva, S.O. España. PhD thesis, Univ. of Sevilla, Sevilla, Spain.
Braungardt, C.B., Achterberg, E.P., Mimmo, M. 1998. Behaviour of disolved trace metals in the Rio Tinto/Rio Odiel Esturine System. In: J.A. Morales, J. Borrego, J. (Eds). European land-ocean interaction studies. Second annual scientific conference. Abstract 51.
Buzzi Marcos, J. 2012. Imaging Spectroscopy to Evaluate the Contamination from Sulphide Mine Waste in the Iberian Pyrite Belt Using Hyperspectral Sensors (Huelva, Spain). Ph.D. Thesis, Universidad de León, León, Spain.
Buzzi, J., Riaza, A., García-Meléndez, E., Weide, S., Bachmann. M. 2014. Mapping Changes in a Recovering Mine Site with Hyperspectral Airborne Hymap Imagery (Sotiel, SW Spain). Minerals 4, 313-329. https://doi.org/10.3390/min4020313.
Cánovas, C.R. 2009. La calidad del agua de los ríos Tinto y Odiel: evolución temporal y factores condicionantes de la movilidad de los metales. Universidad de Huelva. Huelva.
Cheng, Z., Buckley, B.M., Katz, B., Wright, W., Bailey, R., Smith, K.T., van Geen, A. 2007. Arsenic in tree rings at a highly contaminated site. Science of the Total Environment 376 (1-3), 324-334. https://doi.org/10.1016/j.scitotenv.2007.01.074.
Ciszewski, D. 1998. Channel processes as a factor controlling accumulation of heavy metals in river bottom sediments: consequences for pollution monitoring (Upper Silesia, Poland). Environmental Geology 36 (1), 45-54. https://doi.org/10.1007/s002540050319.
Ciszewski. D. 2004. Pollution of Mala Panew river sediments by heavy metals: Part I. Effect of changes in river bed morphology. Polish Journal of Environmental Studies 13 (6), 589-595.
Consejería de Agricultura, Pesca y Medio Ambiente (Junta de Andalucía), 2014. Anejo 5 Implantación del régimen de caudales ecológicos. Demarcación Hidrográfica del Tinto, Odiel y Piedras. Memoria del Ciclo de Plan Hidrológico de la Planificación Hidrológica 2015/2021.
Corella, J.P., Valero-Garcés, B.L., Wang, F., Martínez-Cortizas, A., Cuevas, C.A., Saiz-Lopez, A. 2017. 700 years reconstruction of mercury and lead atmospheric deposition in the Pyrenees (NE Spain). Atmospheric Environment 155, 97-107. https://doi.org/10.1016/j.atmosenv.2017.02.018.
Cutter, B.E., Guyette. R.P. 1993. Anatomical, Chemical, and Ecological Factors Affecting Tree Species Choice in Dendrochemistry Studies. Journal of Environment Quality 22 (3): 611-619. https://doi.org/10.2134/jeq1993.00472425002200030028x.
Donnelly, J.R., Shane, J.B., Schaberg P.G. 1990. Lead mobility within the xylem of red spruce seedlings: implications for the development of pollution histories. Journal of Environmental Quality 19, 268-271. https://doi.org/10.2134/jeq1990.00472425001900020012x.
Doucet, A. 2011. Perspective spatio-temporelle et impacts des contaminants atmosphériques d’origine diffuse sur les forêts périurbaines du sud-est du Canada : une approche dendrogéochimique. Université du Québec, Quebec, Canada.
Fifield, F.W., Haines, P.J. (Eds.). 2000. Environmental analytical chemistry. Wiley.
Foster, I.D.L., Charlesworth, S.M. 1996. Heavy metals in the hydrological cycle: trends and explanation. Hydrological Processes 10 (2), 227-261. https://doi.org/10.1002/(SICI)1099-1085(199602)10:2<227::AID-HYP357>3.0.CO;2-X.
Foulds, S.A., Brewer, P.A., Macklin, M.G., Haresign, W., Betson, R.E., Rassner, S.M.E., 2014. Flood-related contamination in catchments affected by historical metal mining: an unexpected and emerging hazard of climate change. Science of the Total Environment 476, 165-180. https://doi.org/10.1016/j.scitotenv.2013.12.079.
Galván González, L. 2012. Modelización hidrológica del río Odiel: aplicación al estudio de la contaminación por drenaje ácido de minas. Ph.D. Thesis, Universidad de Huelva, Huelva, Spain.
Galván, L., Olías, M., 2015. Estudio de la contaminación por drenaje ácido de minas en la cuenca del Río Odiel. Boletín de la Sociedad Española de Mineralogía 20, 51-52.
George, S.S., Outridge, P.M., Nielsen, E. 2006. High-resolution dendrochemical analysis of flood-affected oaks using laser ablation ICP-mass spectrometry. IAWA Journal 27(1), 19-31. https://doi.org/10.1163/22941932-90000134.
Grande, J.A., Pérez Ostalé, E., de la Torre Sánchez, M.L., Fernandes Valente, T.M., Borrego Flores, J., Pérez Macias, J.A., Santisteban Fernández, M., Garrido Morillo, R., Romero Macías, E., Salmerón García, I. 2016. Drenaje ácido de mina en la Faja Pirítica Ibérica: Técnicas de estudio e inventario de explotaciones. Servicio de Publicaciones Universidad de Huelva, Huelva, Spain.
Gross, J.H. 2006. Mass spectrometry: a textbook. Springer, 1-518 pp., Heilderberg,
Guyette, R.P., Cutter. B.E. 1994. Barium and manganese trends un tree-rings as monitors of sulfur deposition. Water, Air, and Soil Pollution 73, 213-223. https://doi.org/10.1007/BF00477987.
Hagemeyer, J. 1995. Radial distributions of Cd in stems of oak trees (Quercus robur L.) re-analyzed after 10 years. Trees-Structure and Function 9 (4): 200-203. https://doi.org/10.1007/BF00195273.
Hänsch, R., Mendel, R. R. 2009. Physiological Functions of Mineral Micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology 12 (3): 259-266. https://doi.org/10.1016/j.pbi.2009.05.006.
Hong, S., Candelone, J.P., Patterson, C.C., Boutron, C.F. 1996. History of ancient copper smelting pollution during Roman and medieval times recorded in Greenland ice. Science 272(5259), 246-249. https://doi.org/10.1126/science.272.5259.246.
Hürkamp, K., Raab, T., Völkel, J. 2009. Lead pollution of floodplain soils in a historic mining area-age, distribution and binding forms. Water, air, and soil pollution 201(1-4), 331-345. https://doi.org/10.1007/s11270-008-9948-9.
Islam, M.S., Ahmed, M.K., Raknuzzaman, M., Habibullah-Al-Mamun, M., Islam, M.K. 2015. Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country. Ecological Indicators 48, 282-291. https://doi.org/10.1016/j.ecolind.2014.08.016.
Kabata-Pendias, A., Pendias, H. 2001. Trace elements in soils and plants. 3rd ed. FI CRC Press, 1-413 pp., Boca Raton, US.
Lageard, J.G.A., Howell, J.A., Rothwell, J.J., Drew, I.B. 2008. The utility of Pinus sylvestris L. in dendrochemical investigations: Pollution impact of lead mining and smelting in Darley Dale, Derbyshire, UK. Environmental Pollution 153 (2), 284-294. https://doi.org/10.1016/j.envpol.2007.08.031.
Leistel, J.M., Marcoux, E., Thiéblemont, D., Quesada, C., Sánchez, A., Almodóvar, G.R., Sáez, R.J.M.D. 1997. The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt Review and preface to the Thematic Issue. Mineralium Deposita 33 (1-2), 2-30.
Lewis, T.E. (Ed.). 1995. Dendrochronology and dendrochemistry in regional ecosystem health assessments: the forest health monitoring experience. In: Tree Rings as Indicators of Ecosystem Health, 25 June 1993, Penn State University, University Park, Pa. CRC Press, Boca Raton, Fla. pp. 1-16.
López, E., Sánchez, J., Diez, M., Santofimia, E., Reyes J., 2008. Cortas mineras inundadas de la Faja Pirítica: inventario e hidroquímica. Instituto Geológico y Minero de España. Madrid.
Madejon, P., Marañón, T., Murillo, J. M., Robinson, B. 2004. White poplar (Populus alba) as a biomonitor of trace elements in contaminated riparian forests. Environmental Pollution 132 (1), 145-155. https://doi.org/10.1016/j.envpol.2004.03.015.
Meerts, P. 2002. Mineral nutrient concentrations in sapwood and heartwood: a literature review. Annals of Forest Science 59 (7), 713-722. https://doi.org/10.1051/forest:2002059.
Morales, J.A., Pons, J.M., Cantano, M. 2005. Introducción al análisis de los riesgos de inundación en las riberas de las áreas estuarinas: El caso de las poblaciones adyacentes a la Ría de Huelva (SO España). Geogaceta 37, 243-246.
Morillo, J., Usero, J., Gracia, I. 2002. Partitioning of metals in sediments from the Odiel River (Spain). Environment International 28 (4), 263-271. https://doi.org/10.1016/S0160-4120(02)00033-8.
Nobel, P.S. 1999. Physicochemical and environmental plant physiology. Academic Press, San Diego, California, USA.
Nordstrom, D.K., Alpers, C.N. 1999. Geochemistry of acid mine waters. In: The environmental geochemistry of mineral deposits, 6A: 133-160. Rev Econ Geol. Plumlee GS, Logsdon MJ.
Norton, S.A. 1977. Changes in chemical processes in soils caused by acid precipitation. Water, Air, and Soil Pollution, 7(3), 389-400. https://doi.org/10.1007/BF00284133.
Nriagu, J.O. 1996. A history of global metal pollution. Science 272 (5259), 223-223. https://doi.org/10.1126/science.272.5259.223.
Obeng, E.A., Oduro, K.A., Obiri, B.D., Abukari, H., Guuroh, R.T., Djagbletey, G.D., Appiah, M., 2019. Impact of illegal mining activities on forest ecosystem services: local communities’ attitudes and willingness to participate in restoration activities in Ghana. Heliyon 5 (10), e02617. https://doi.org/10.1016/j.heliyon.2019.e02617.
Pérez-López, R., Nieto, J.M., López-Cascajosa, M.J., Díaz-Blanco, M.J., Sarmiento, A.M., Oliveira, V., Sánchez-Rodas, D. 2011. Evaluation of heavy metals and arsenic speciation discharged by the industrial activity on the Tinto-Odiel estuary, SW Spain. Marine Pollution Bulletin 62, 405-411. https://doi.org/10.1016/j.marpolbul.2010.12.013.
Riaza, A., Buzzi, J., García-Meléndez, E., Carrère, V., Sarmiento A., Müller, A. 2012. River acid mine drainage: sediment and water mapping through hyperspectral Hymap data. International Journal of Remote Sensing 33 (19), 6163-6185. https://doi.org/10.1080/01431161.2012.675454.
Riaza, A., Buzzi, J., García-Meléndez, E., Del Moral, B., Carrère, V., Richter, R. 2017. Monitoring salt crusts on an AMD contaminated coastal wetland using hyperspectral Hyperion data (Estuary of the River Odiel, SW Spain). International Journal of Remote Sensing 38 (12), 3735-3762. https://doi.org/10.1080/01431161.2017.1302621.
Rico, M., Benito, G., Diez-Herrero, A. 2008. Floods from tailings dam failures. Journal of Hazardous Materials 154 (1-3), 79-87. https://doi.org/10.1016/j.jhazmat.2007.09.110.
Rinn F. 1996. Tsap V. 3.6 Reference Manual: Computer Program for Tree-Ring Analysis and Presentation, 263 pp., Heidelberg, Germany,
Robles-Arenas, V.M., Rodríguez, R., García, C., Manteca, J.I., Candela, L. 2006. Sulphide-mining impacts in the physical environment: Sierra de Cartagena–La Unión (SE Spain) case study. Environmental Geology 51(1), 47-64. https://doi.org/0.1007/s00254-006-0303-4.
Rodríguez-Martín, J.A.R., Gutiérrez, C., Torrijos, M., Nanos, N. 2018. Wood and bark of Pinus halepensis as archives of heavy metal pollution in the Mediterranean Region. Environmental Pollution 239, 438-447. https://doi.org/10.1016/ j.envpol.2018.04.036.
Prohaska, T., Stadlbauer, C., Wimmer, R. Stingeder, G., Latkoczy, Ch., Hoffmann, E., Stephanowitz, H. 1998. Investigation of element variability in tree rings of young Norway spruce by laser-ablation-ICPMS. Science of the Total Environment 219 (1): 29-39. https://doi.org/10.1016/S0048-9697(98)00224-1.
Saint-Laurent, D., St-Laurent, J., Duplessis, P., Lavoie, L. 2010. Isotopic record of lead contamination in alluvial soils and tree rings on recent floodplains (Southern Québec, Canada). Water, Air, & Soil Pollution 20, 9(1-4), 451-466. https://doi.org/10.1007/s11270-009-0213-7.
Scharnweber, T., Hevia, A., Buras, A., van der Maaten, E., Wilmking, M. 2016. Common trends in elements? Within-and between-tree variations of wood-chemistry measured by X-ray fluorescence-A dendrochemical study. Science of the Total Environment 566, 1245-1253. https://doi.org/10.1016/j.scitotenv.2016.05.182.
Schweingruber, F.H., 2007. Wood structure and environment. Springer, Heidelberg, Germany.
Sheppard, J.C., Funk. W.H. 1975. Trees as environmental sensors monitoring long-term heavy metal contamination of Spokane River, Idaho. Environmental Science & Technology 9 (7), 638-642.
Silva, J.B., Oliveira, J.T., Ribeiro, A. 1990. Structural outline. In: R.D. Dallmeyer, E.M. García (Eds.). Pre-Mesozoic Geology of Iberia. IGCP-Project 233 (Terranes in the Circum-Atlantic Palezoic Orogens), Springer, pp. 348-362, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83980-1_24.
Smith, K.T., Shortle, W.C. 1996. Tree biology and dendrochemistry. In: J.S. Dean, D.M. Meko, T.W. Swetnam (Eds.). Tree rings, Environment and Humanity. Proceedings of an International Conference. Tucson, AZ: Radiocarbon: 629-635.
Sprent, P., Smeeton, N.C. 2001. Applied Nonparametric Statistical Methods. 3rd Edition, Chapman & Hall/CRC, 463 pp., Boca Raton, US.
St. George, S., Outridge, P.M., Nielsen, E. 2006. High-resolution dendrochemical analysis of flood-affected oaks using laser ablation ICP-mass spectrometry. IAWA journal 27(1), 19-31.
St. Laurent, J., Saint-Laurent, D., Duplessis, P., Hähni, M., Begin, C. 2009. Application of dendrochronological and dendrochemical methods for dating contamination events of the Saint-François and Massawippi riverbanks (Québec, Canada). Soil, Sediment and Contamination 18 (5), 642-668. https://doi.org/10.1080/15320380903113626.
Stoffel, M., Slaveykova, V.I., Corona, C., Ballesteros-Cánovas, J.A. 2020. When scientists become detectives: investigating systematic tree poisoning in a protected cove. Heliyon 6(2), e03386. https://doi.org/10.1016/j.heliyon.2020.e03386.
Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J. 2012. Heavy metal toxicity and the environment. In: A. Luch (Ed.). Molecular, Clinical and Environmental Toxicology. Springer, pp. 133-164, Basel.
Watmough, S.A., Hutchinson, T.C. 1996. Analysis of Tree Rings Using Inductively Coupled Plasma Mass Spectrometry to Record Fluctuations in a Metal Pollution Episode. Environmental Pollution 93 (1), 93-102. https://doi.org/10.1016/0269-7491(95)00107-7.
Watmough, S.A., Hutchinson, T.C. 2002. Historical changes in lead concentrations in tree-rings of sycamore, oak and Scots pine in north-west England. Science of the Total Environment 293 (1): 85-96. https://doi.org/10.1016/S0048-9697(01)01149-4.
Watmough, S.A., Hutchinson, T.C. 2003. A comparison of temporal patterns in trace metal concentration in tree rings of four common European tree species adjacent to a Cu-Cd refinery. Water, Air, & Soil Pollution 146 (1): 225-241. https://doi.org/10.1023 /A:1023952417583.
Witte, K.M., Wanty, R.B., Ridley, W.I. 2004. Engelmann Spruce (Picea engelmannii) as a biological monitor of changes in soil metal loading related to past mining activity. Applied Geochemistry 19 (9), 1367-1376. https://doi.org/10.1016/j.apgeochem.2004.01.022.
Wright, G., Woodward, C., Peri, L., Weisberg, P.J., Gustin, M.S. 2014. Application of tree rings [dendrochemistry] for detecting historical trends in air Hg concentrations across multiple scales. Biogeochemistry 120 (1-3), 149-162. https://doi.org/10.1007/s10533-014-9987-9.
Yanosky, T.M., Hupp, C.R., Hackney, C.T. 1995. Chloride concentrations in growth rings of Taxodium distichum in a saltwater‐intruded estuary. Ecological Applications 5 (3), 785-792. https://doi.org/10.2307/1941986.
Yanosky, T.M., Vroblesky, D.A. 1992. Relation of nickel concentrations in tree rings to groundwater contamination. Water Resources Research 28 (8), 2077-2083. https://doi.org/10.1029/92WR00731.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
El autor o autora conserva todos los derechos sobre su artículo y cede a la revista el derecho de la primera publicación, no siendo necesaria la autorización de la revista para su difusión una vez publicado. Una vez publicada la versión del editor el autor está obligado a hacer referencia a ella en las versiones archivadas en los repositorios personales o institucionales.
El artículo se publicará con una licencia Creative Commons de Atribución, que permite a terceros utilizar lo publicado siempre que se mencione la autoría del trabajo y la primera publicación en esta revista.
Se recomienda a los autores/as el archivo de la versión de editor en repositorios institucionales.