Inventario de glaciares rocosos y protalus rampart en la cuenca del río Las Salinas, Andes centrales argentinos

Autores/as

  • Ana Paula Forte CONICET - Centro de Investigaciones de la Geosfera y la Biósfera (CIGEOBIO). Universidad Nacional de San Juan y Universidad Nacional de Cuyo
  • Cristian Daniel Villarroel CONICET - Centro de Investigaciones de la Geosfera y la Biósfera (CIGEOBIO). Universidad Nacional de San Juan y Universidad Nacional de Cuyo
  • María Yanina Esper Angillieri CONICET - Centro de Investigaciones de la Geosfera y la Biósfera (CIGEOBIO). Universidad Nacional de San Juan.

DOI:

https://doi.org/10.18172/cig.4922

Palabras clave:

Glaciar rocoso, permafrost de montaña, protalus rampart, Andes centrales argentinos, variables ambientales

Resumen

Este artículo presenta un inventario detallado de glaciares rocosos y protalus rampart en la cuenca del río Las Salinas, un sistema hidrológico de montaña subtropical (entre 31°02’ y 31°22’S de latitud), localizado en el sector septentrional de los Andes centrales de Argentina, donde predominan el permafrost y los procesos criogénicos. El inventario se basa en una caracterización geomorfológica mediante teledetección óptica y datos de descripción de campo. La región cubre 630 km2. Un 3,25% del área contiene un total de 405±8,2 glaciares rocosos y protalus rampart, de los que 231±2,5 pueden considerarse protalus rampart, 49±2 pueden catalogarse como activos, 61±1 inactivos y 64±3 glaciares rocosos fósiles. Ratio de frecuencias y regresión logística se utilizaron como métodos estadísticos para determinar la relación entre la distribución de estas formas periglaciares y diferentes variables geológicas, morfométricas y climáticas como la altitud, radiación solar entrante potencial, pendiente, exposición y litología. Los resultados muestran que la altitud, la litología y la exposición son los factores más influyentes en la aparición de glaciares rocosos activos. Según la distribución de los glaciares rocosos y protalus rampart, el permafrost se sitúa por encima de los 3690 m s.n.m. (medioambiente periglacial actual). Sin embargo, por debajo de esta elevación se encontraron algunos glaciares rocosos y protalus rampart inactivos, por lo que entre los 3300 y 3690 m s.n.m., los paisajes están dominados por un ambiente periglacial inestable.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Atkinson, P., Jiskoot, H., Massari, R., Murray, T. 1998. Generalized linear modelling in geomorphology. Earth Surface Processes and Landforms 23 (13), 1185-1195. https://doi.org/10.1002/(SICI)1096-9837(199812)23:13<1185::AID-ESP928>3.0.CO;2-W

Ayalew, L., Yamagishi, H. 2005. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65 (1-2), 15-31. https://doi.org/10.1016/j.geomorph.2004.06.010

Azócar, G.F., Brenning, A. 2010. Hydrological and Geomorphological Significance of Rock Glaciers in the Dry Andes, Chile (27°-33°S). Permafrost and Periglacial Processes 21, 42-53. https://doi.org/10.1002/ppp.669

Barsch, D., 1996. Rockglaciers. Indicators for the Present and Former Geoecology in High Mountain Environments Springer, Berlin.

Bonham-Carter, G.F. 1994. Geographic information systems for geoscientists-modeling with GIS. Computer Methods in the Geoscientists 13, 398.

Brardinoni, F., Scotti, R., Sailer, R., Mair, V. 2019. Evaluating sources of uncertainty and variability in rock glacier inventories. Earth Surface Processes and Landforms 44 (12), 2450-2466. https://doi.org/10.1002/esp.4674

Brenning, A. 2005. Climatic and geomorphological controls of rock glaciers in the Andes of Central Chile: Combining statistical modelling and field mapping. Ph.D. thesis. Humboldt Universität. Berlin, Alemania, 137 pp.

Brenning, A., Trombotto, D. 2006. Logistic regression modelling of rock glacier and glacier distribution: Topographic and climatic controls in the semi-arid Andes, Geomorphology 81, 141-154. https://doi.org/10.1016/j.geomorph.2006.04.003

Bruniard, E.D., 2014. La diagonal árida argentina: un límite climático real. Revista Geográfica 95, 5-20.

Clarck, W.A.V., Hosking, P.L. 1986. Statistical methods for geographers. John Wiley and Sons, 518 p., New York.

Colucci, R.R., Boccali, C., Žebre, M., Guglielmin, M. 2016. Rock glaciers, protalus ramparts and pronival ramparts in the south-eastern Alps. Geomorphology 269, 112-121. https://doi.org/10.1016/j.geomorph.2016.06.039

Colucci, R.R., Forte, E., Zebre, M., Maset, E., Zanetti, C., Guglielmin, M. 2019. Is that a relict rock glacier? Geomorphology 330, 177-189. https://doi.org/10.1016/j.geomorph.2019.02.002

Corripio, J., Purves, R., Rivera, A. 2007. Modeling climate-change impacts on mountain glaciers and water resources in the Central Dry Andes, Darkening Peaks: Glacier Retreat, Science and Society, University of California Press, pp. 126-136, USA.

Esper Angillieri, M.Y., 2010. Application of frequency ratio and logistic regression to active rock glacier occurrence in the Andes of San Juan, Argentina. Geomorphology 114, 396-405. https://doi.org/10.1016/j.geomorph.2009.08.003

Esper Angillieri, M.Y. 2017. Permafrost distribution map of San Juan Dry Andes (Argentina) based on rock glacier sites. Journal of South American Earth Sciences 73 (C), 42-49. https://doi.org/10.1016/j.jsames.2016.12.002

Forte, A.P. 2020. Evolución reciente de glaciares en las nacientes del arroyo Laguna Blanca y su importancia hidrológica. Calingasta, San Juan, Argentina. Tesis Doctoral. Facultad de Ciencias Exactas, Físicas y Naturales. Universidad Nacional de San Juan.

Forte, A.P., Güell, A.E., Villarroel, C.D. 2013. Tomografía sísmica en glaciares de escombros en las nacientes del arroyo Los Patos Norte. Calingasta, San Juan, Argentina. Boll. Geof. Teor. Appl. 25, 263-265.

Forte, A.P., Villarroel, C.D., 2019. Reconstrucción geomorfológica del último máximo glaciar en la cuenca del río San Juan, Argentina. Cuaternario y Geomorfología 33, 62-82.

French, H. M., Williams, P. 2007. The periglacial environment (Vol. 458). Chichester: John Wiley and Sons.

García Piña A., Ulloa C., Amigo G., Milana J.P., Medina C., 2017. An inventory of cryospheric landforms in the arid diagonal of South America (high Central Andes, Atacama region, Chile). Quaternary International 1-16. https://doi.org/10.1016/j.quaint.2017.04.033

Haeberli W., Noetzli J., Arenson L., Delaloye R., Gärtner-Roer I., Gruber S., Isaksen K., Kneisel C., Krautblatter M., Phillips M., 2010. Mountain permafrost: development and challenges of a young research field. Journal of Glaciology 56 (200), 1043-1058. https://doi.org/10.3189/002214311796406121

Harrisson, S., Glasser, N., Winchester, V., Haresign, E., Warren, C.H., Duller, G., Bailey, R., Ivy-Ochs, S., Jansson, K., Kubik, P., 2008. Glaciar León, Chilean Patagonia: late-Holocene chronology and geomorphology. The Holocene 18 (4), 643-652. https://doi.org/10.1177/0959683607086771

Hedding, D.W., 2011. Pronival rampart and protalus rampart: A review of terminology. Journal of Glaciology 57 (206), 1179-1180. https://doi.org/10.3189/002214311798843241

Hosmer, D.W., Jovanovic, B., Lemeshow, S. 1989. Best subsets logistic regression. Biometrics 45 (4), 1265-1270. https://doi.org/10.2307/2531779

Ikeda, A., Matsuoka, N. 2006. Pebbly versus bouldery rock glaciers: Morphology, structure and processes. Geomorphology 73, 279-296. https://doi.org/10.1016/j.geomorph.2005.07.015

ING. 2016. Informe de la subcuenca del río Blanco, Cuenca del río San Juan. Inventario Nacional de Glaciares. Ministerio de Ambiente y Desarrollo Sustentable. IANIGLA- CCT Mendoza – CONICET.

Johnson, B., Thackray, G., Van Kirk, R. 2007. The effect of topography, latitude and lithology on rock glacier distribution in Lemhi Range, central Idaho, USA, Geomorphology 91, 38-50. https://doi.org/10.1016/j.geomorph.2007.01.023

Jones, D.B., Harrison, S., Anderson, K., Selley, H.L., Wood, J.L., Betts, R.A. 2018. The distribution and hydrological significance of rock glaciers in the Nepalese Himalaya. Glob. Planet. Chang. 160 (C), 123-142. https://doi.org/10.1016/j.gloplacha.2017.11.005

Jones, D.B., Harrison, S., Anderson, K., Walley, B. 2019. Rock glaciers and mountain hydrology: A review. Earth-Science Reviews 193, 66-90. https://doi.org/10.1016/j.earscirev.2019.04.001

Kääb, A., Frauenfelder, R., Roer, I., 2007. On the response of rockglacier creep to surface temperature increase. Global and Planetary Change 56, 172-187. https://doi.org/10.1016/j.gloplacha.2006.07.005

Menard, S. 2000. Coefficients of determination for multiple logistic regression analysis. The American Statistician 54(1), 17-24.

Monnier, S., Kinnard, C. 2013. Internal structure and composition of a rock glacier in the Andes (upper Choapa valley, Chile) using borehole information and ground-penetrating radar. Annals of Glaciology 54 (64), 61-72. https://doi.org/10.3189/2013AoG64A107

Ohlanders, N., Rodríguez, M., McPhee, J. 2013. Stable water isotope variation in a Central Andean watershed dominated by glacier and snowmelt. Hydrology and Earth System Sciences 17 (3), 1035-1050. https://doi.org/10.5194/hess-17-1035-2013

Palacios, D., Stokes, C. R., Phillips, F. M., Clague, J.J., Alcalá-Reygosa, J., Andrés, N., Angel, I., Blard, P.H., Briner, P.J., Hall, B.L., Dahms, D., Heins, A.S., Jomelli, V., Mark, B.G., Martine, M.A., Moreno, P., Riedel, J., Sagredo, E., Stansell, N.D., Vázquez-Selem, L., Vuille, M., Ward, D.J. 2020. The deglaciation of the Americas during the Last Glacial Termination. Earth-Science Reviews 203, 103113. https://doi.org/10.1016/j.earscirev.2020.103113

Paul, F., Barry, J.G., Cogley, H., Frey, H., Haeberli, W., Ohmura, A., Ommanney, C.S.L., Raup, B., Rivera, A., Zemp, M., 2010. Guidelines for the compilation of glacier inventory data from digital sources. WGMS, GLIMS, Globglacier, University of Zürich.

Rivera, J.A., Penalba, O.C., Betolli, M.L., 2013. Inter-annual and inter-decadal variability of dry days in Argentina. International Journal Climatology 33, 834-842. https://doi.org/10.1002/joc.3472

Roer, I., Nyenhuis, M. 2007. Rock glacier activity studies on a regional scale: comparison of geomorphological mapping and photogrammetric monitoring. Earth Surface Processes Landforms 32, 1747-1758. https://doi.org/10.1002/esp.1496

Rolleri, E.O., Criado R.P., 1970. Geología de la provincia de Mendoza. 4ª Jornadas Geológicas Argentinas, Actas 2, 1-60.

Scapozza, C., Lambiel C., Baron L., Marescot L., Reynard E., 2011. Internal structure and permafrost distribution in two alpine periglacial talus slopes, Valais, Swiss Alps. Geomorphology 132 (3-4), 208-221.https://doi.org/10.1016/j.geomorph.2011.05.010

Schreiber, E., 2015. Modeling the distribution of Mountain Permafrost in Central Andes, San Juan, Argentina. M. S. Thesis, University of Delaware, United States.

Scotti, R., Brardinoni, F., Alberti, S., Frattini, P., Crosta, G.B. 2013. A regional inventory of rock glaciers and protalus ramparts in the central Italian Alps. Geomorphology 186, 136-149. https://doi.org/10.1016/j.geomorph.2012.12.028

SEGEMAR, 2008. SIG SEGEMAR, 2016. http://sig.segemar.gov.ar/, last access: 7 September 2016.

Strecker, M.R., Alonso, R.N., Bookhagen, B., Carrapa, B., Hilley, G.E., Sobel, E. R., Trauth, M.H., 2007. Tectonics and climate of the southern central Andes. Annual Review of Earth and Planetary Sciences 35, 747-787.

Tapia Baldis, C. 2018. Distribución y características del ambiente periglaciar en el extremo oeste del departamento Calingasta, provincial de San Juan, Argentina. Tesis Doctoral. Facultad de Ciencias Exactas, Físicas y Naturales. Universidad Nacional de San Juan.

Travis, M.R., Elsener, G.H., Iverson, W.D., Johnson, C.G. 1975. View it computation of seen areas, slope, and aspect for land-use planning. US Department of Agriculture Forest Service General Technical Report PSW, Pacific Southwest Forest and Range Experimental Station, Berkeley, California, U.S.A, 11, 70p.

Trombotto, D., Lenzano, M.G., Castro, M. 2012. Inventory and monitoring of cryoforms and cryogenic processes in the Central Andes of Mendoza, Argentina: birth and extinction of a periglacial lake. 10° International Conference on Permafrost, Proceedings 1, 419-424, Salekhard, Russia.

Villarroel, C.D. 2019. Características hidrológicas del ambiente periglacial de montaña y estructura interna de glaciares de escombros en los Andes centrales de San Juán. Tesis Doctoral. Facultad de Ciencias Exactas, Físicas y Naturales. Universidad Nacional de San Juan.

Villarroel, C.D., Tamburini Beliveau, G., Forte, A.P., Monserrat, O., Morvillo, M. 2018. DInSAR for a Regional Inventory of Active Rock Glaciers in the Dry Andes Mountains of Argentina and Chile with Sentinel-1 Data. Remote Sensing 10, 1 - 21. https://doi.org/10.3390/rs10101588

Villarroel, C.D., Forte, A. P., 2020. Spatial distribution of active and inactive rock glaciers and protalus ramparts in a sector of the Central Andes of Argentina. Cuadernos de Investigación Geográfica (Geographical Research Letters) 46 (1), 141-158. https://doi.org/10.18172/cig.4272

Villarroel, C.D., Forte, A.P., Ortiz, D.A., Beliveau, G.T., Güell, A. 2020. Active layer and permafrost thickness in rock glaciers derived from geophysical methods in the semiarid Andes of Argentina. Geomorphology, 107249. https://doi.org/10.1016/j.geomorph.2020.107249

Whalley W.B., Azizi F., 2003. Rock glaciers and protalus landforms: Analogous forms and ice sources on Earth and Mars. Journal of Geophysical Research: Planets 108-E4. https://doi.org/10.1029/2002JE001864

Descargas

Publicado

2021-07-01

Cómo citar

1.
Forte AP, Villarroel CD, Esper Angillieri MY. Inventario de glaciares rocosos y protalus rampart en la cuenca del río Las Salinas, Andes centrales argentinos. CIG [Internet]. 1 de julio de 2021 [citado 22 de febrero de 2025];47(2):309-36. Disponible en: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/4922

Número

Sección

Artículos