Susceptibilidad para incendios de cubierta vegetal
una evaluación desde los métodos multicriterio y radiofrecuencia (Cantón Cotacachi, Ecuador)
DOI:
https://doi.org/10.18172/cig.5867Palabras clave:
radiofrecuencia, Cotacachi, fuego, cobertura vegetal, análisis multicriterioResumen
En Ecuador, alrededor de 11688,88 hectáreas de cobertura vegetal se perdieron en el 2023 producto de los 1495 incendios de cobertura vegetal (ICV) registrados. Por ello, la presente investigación tuvo como objetivo determinar áreas susceptibles a ICV para el cantón Cotacachi en Ecuador y en sus dos zonas diferenciadas. Para evaluar la susceptibilidad a ICV en un entorno SIG se aplicaron los métodos multicriterio de Proceso de Análisis Jerárquico (AHP) y Radio Frecuencia (RF). Para ello, se establecieron 11 factores clasificados en topográficos (altitud, pendiente del terreno, orientación del terreno), climáticos (precipitación, temperatura, evapotranspiración potencial, déficit hídrico y velocidad del viento) y antrópicos (cobertura de suelo, cercanía a carreteras y cercanía a espacios agrícolas). Después, se obtuvieron los modelos espacialmente explícitos y los resultados fueron validados con la curva ROC y el área bajo la curva (AUC). Los resultados muestran que alrededor del 47% del territorio presenta peligro extremo a los ICV según el método multicriterio AHP y un 53% del cantón según el método RF, presentando una mayor concentración en la zona subtropical que en la zona andina. Los valores del rendimiento muestran que, después de comparar los modelos con información de focos de calor del sistema FIRMS-NASA del periodo 2000-2020, se obtuvo un AUC: 0,824 para el modelo AHP y un valor AUC: 0,902 para el modelo RF. Mientras que, al compararlo con los incendios históricos del periodo 2018-2020, se obtuvo un AUC: 0,748 para el modelo AHP y un valor AUC: 0,755 para el modelo RF. Finalmente, se concluye que los modelos multicriterio AHP y RF presentaron resultados y rendimientos similares con mínimas diferencias.
Descargas
Citas
Abedi Gheshlaghi, H., 2019. Using GIS to Develop a Model for Forest Fire Risk Mapping. Journal of the Indian Society of Remote Sensing 47(7), 1173-1185. https://doi.org/10.1007/s12524-019-00981-z DOI: https://doi.org/10.1007/s12524-019-00981-z
Abedi Gheshlaghi, H., Feizizadeh, B., Blaschke, T., 2020. GIS-based forest fire risk mapping using the analytical network process and fuzzy logic. Journal of Environmental Planning and Management 63(3), 481-499. https://doi.org/10.1080/09640568.2019.1594726 DOI: https://doi.org/10.1080/09640568.2019.1594726
Anrango, S., Chingal, M., Arias-Muñoz, P., 2020. Zonificación de Cobertura Vegetal Propensa a Incendios en el Cantón Ibarra: Una Mirada al Centro Poblado Más Grande de la Cuenca del Río Mira. En: P. Aguirre (Ed.). Riesgos Naturales en la cuenca del río Mira. Variabilidad del clima, deslizamientos, incendios y vulnerabilidad volcánica, pp. 57-74. Cuvillier Verlag. https://sustentabilidadyambiente.files.wordpress.com/2020/12/riesgos-naturales-en-la-cuenca-del-rio-mira.pdf
Arias-Muñoz, P., Encarnación, G., Díaz, A., Herrera, F., 2020. Zonificación de Áreas Propensas a Incendios de Cobertura Vegetal en la Subcuenca del Río Mataquí ubicada en la Provincia Imbabura. En P. Aguirre (Ed.). Riesgos Naturales en la cuenca del río Mira. Variabilidad del clima, deslizamientos, incendios y vulnerabilidad volcánica, pp. 41-56. Cuvillier Verlag. https://sustentabilidadyambiente.files.wordpress.com/2020/12/riesgos-naturales-en-la-cuenca-del-rio-mira.pdf
Bargali, H., Calderon, L. P. P., Sundriyal, R., Bhatt, D., 2022. Impact of forest fire frequency on floristic diversity in the forests of Uttarakhand, western Himalaya. Trees, Forests and People 9, 100300. https://doi.org/10.1016/j.tfp.2022.100300 DOI: https://doi.org/10.1016/j.tfp.2022.100300
Bonora, L., Claudio Conese, C., Marchi, E., Tesi, E., Montorselli, N. B., 2013. Wildfire Occurrence: Integrated Model for Risk Analysis and Operative Suppression Aspects Management. American Journal of Plant Sciences 04 (03), 705-710. https://doi.org/10.4236/ajps.2013.43A089 DOI: https://doi.org/10.4236/ajps.2013.43A089
Bradstock, R. A., Williams, R. J., Gill, A. M., 2012. Flammable Australia: Fire regimes, biodiversity and ecosystems in a changing world. CSIRO publishing. DOI: https://doi.org/10.1071/9780643104839
Buytaert, W., Célleri, R., De Bièvre, B., Cisneros, F., 2006. Hidrología del páramo andino: Propiedades, importancia y vulnerabilidad. Cuenca. Recuperado: http://www.paramo.org/files/hidrologia_paramo.pdf
Casado, A. L., Gil, V., 2006. Consecuencias de la variación de la disponibilidad hídrica en la cuenca del arroyo El Belisario, Buenos Aires, Argentina. https://repo.unlpam.edu.ar/handle/unlpam/2561
Cheng, Y., Luo, P., Yang, H., Li, H., Luo, C., Jia, H., Huang, Y., 2023. Fire effects on soil carbon cycling pools in forest ecosystems: A global meta-analysis. Science of The Total Environment 895, 165001. https://doi.org/10.1016/j.scitotenv.2023.165001 DOI: https://doi.org/10.1016/j.scitotenv.2023.165001
Cohen, J., 1960. A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement 20(1), 37-46. https://doi.org/10.1177/001316446002000104 DOI: https://doi.org/10.1177/001316446002000104
de Santana, R. O., Delgado, R. C., Schiavetti, A., 2021. Modelling susceptibility to forest fires in the Central Corridor of the Atlantic Forest using the frequency ratio method. Journal of Environmental Management 296, 113343. https://doi.org/10.1016/j.jenvman.2021.113343 DOI: https://doi.org/10.1016/j.jenvman.2021.113343
del Campo Parra-Lara, Á., Bernal-Toro, F. H., 2010. Incendios de cobertura vegetal y biodiversidad: Una mirada a los impactos y efectos ecológicos potenciales sobre la diversidad vegetal. El hombre y la máquina 35, 67-81. https://www.redalyc.org/pdf/478/47817140008.pdf
Doerr, S. H., Shakesby, R. A., 2006. Forest fire impacts on catchment hydrology: A critical review. Forest Ecology and Management 234, S161. https://doi.org/10.1016/j.foreco.2006.08.212 DOI: https://doi.org/10.1016/j.foreco.2006.08.212
Estacio, J., Narváez, N., 2012. Incendios forestales en el Distrito Metropolitano de Quito (DMQ): Conocimiento e intervención pública del riesgo. Letras Verdes: Revista Latinoamericana de Estudios Socioambientales 11, 27-52. https://dialnet.unirioja.es/servlet/articulo?codigo=5444128 DOI: https://doi.org/10.17141/letrasverdes.11.2012.914
Eugenio, F. C., Dos Santos, A. R., Fiedler, N. C., Ribeiro, G. A., Da Silva, A. G., Dos Santos, Á. B., Paneto, G. G., Schettino, V. R., 2016. Applying GIS to develop a model for forest fire risk: A case study in Espírito Santo, Brazil. Journal of Environmental Management 173, 65-71. https://doi.org/10.1016/j.jenvman.2016.02.021 DOI: https://doi.org/10.1016/j.jenvman.2016.02.021
Fries, A., Rollenbeck, R., Göttlicher, D., Nauß, T., Homeier, J., Peters, T., Bendix, J., 2009. Thermal structure of a megadiverse Andean Mountain ecosystem in southern Ecuador and its regionalization. ERDKUNDE 63(4), 321-335. https://doi.org/10.3112/erdkunde.2009.04.03 DOI: https://doi.org/10.3112/erdkunde.2009.04.03
García Leyton, L. A., Baldasano Recio, J. M., 2004. Aplicación del análisis multicriterio en la evaluación de impactos ambientales [Tesis de Doctorado, Universitat Politècnica de Catalunya]. https://doi.org/10.5821/dissertation-2117-94140 DOI: https://doi.org/10.5821/dissertation-2117-94140
Garreaud, R. D., Vuille, M., Compagnucci, R., Marengo, J., 2009. Present-day South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology 281(3-4), 180-195. https://doi.org/10.1016/j.palaeo.2007.10.032 DOI: https://doi.org/10.1016/j.palaeo.2007.10.032
Gobierno Autónomo Descentralizado de Cotacachi, 2015. Plan de desarrollo y ordenamiento territorial. Cantón Cotacachi. GAD Cotacachi. https://www.imbabura.gob.ec/ phocadownloadpap/K-Planes-programas/PDOT/Cantonal/PDOT%20COTACACHI.pdf
He, H. S., Mladenoff, D. J., Gustafson, E. J., 2002. Study of landscape change under forest harvesting and climate warming-induced fire disturbance. Forest Ecology and Management 155(1-3), 257-270. https://doi.org/10.1016/S0378-1127(01)00563-1 DOI: https://doi.org/10.1016/S0378-1127(01)00563-1
Hong, H., Naghibi, S. A., Moradi Dashtpagerdi, M., Pourghasemi, H. R., Chen, W., 2017. A comparative assessment between linear and quadratic discriminant analyses (LDA-QDA) with frequency ratio and weights-of-evidence models for forest fire susceptibility mapping in China. Arabian Journal of Geosciences 10(7), 167. https://doi.org/10.1007/s12517-017-2905-4 DOI: https://doi.org/10.1007/s12517-017-2905-4
Huang, I. B., Keisler, J., Linkov, I., 2011. Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends. Science of The Total Environment 409(19), 3578-3594. https://doi.org/10.1016/j.scitotenv.2011.06.022 DOI: https://doi.org/10.1016/j.scitotenv.2011.06.022
Instituto Nacional de Estadísticas y Censos, 2023. Censo Ecuador. https://www.censoecuador.gob.ec/
Jaafari, A., Mafi Gholami, D., 2017. Wildfire hazard mapping using an ensemble method of frequency ratio with Shannon’s entropy. Iranian Journal of Forest and Poplar Research 25(2). https://doi.org/10.22092/ijfpr.2017.111758
Johnston, K., Ver Hoef, J. M., Krivoruchko, K., Lucas, N., 2001. Using ArcGIS geostatistical analyst (Vol. 380). Esri Redlands.
Kane, V. R., Lutz, J. A., Alina Cansler, C., Povak, N. A., Churchill, D. J., Smith, D. F., Kane, J. T., North, M. P., 2015. Water balance and topography predict fire and forest structure patterns. Forest Ecology and Management 338, 1-13. https://doi.org/10.1016/j.foreco.2014.10.038 DOI: https://doi.org/10.1016/j.foreco.2014.10.038
Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J. C., Mathis, M., Brumby, S. P., 2021. Global land use/land cover with Sentinel 2 and deep learning. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, pp. 4704-4707. https://doi.org/10.1109/IGARSS47720.2021.9553499 DOI: https://doi.org/10.1109/IGARSS47720.2021.9553499
Landis, J. R., Koch, G. G., 1977. The Measurement of Observer Agreement for Categorical Data. Biometrics 33(1), 159. https://doi.org/10.2307/2529310 DOI: https://doi.org/10.2307/2529310
Liao, X., Carin, L., 2009. Migratory Logistic Regression for Learning Concept Drift Between Two Data Sets with Application to UXO Sensing. IEEE Transactions on Geoscience and Remote Sensing 47(5), 1454-1466. https://doi.org/10.1109/TGRS.2008.2005268 DOI: https://doi.org/10.1109/TGRS.2008.2005268
Linkov, I., Satterstrom, F. K., Kiker, G., Batchelor, C., Bridges, T., Ferguson, E., 2006. From comparative risk assessment to multi-criteria decision analysis and adaptive management: Recent developments and applications. Environment International 32(8), 1072-1093. https://doi.org/10.1016/j.envint.2006.06.013 DOI: https://doi.org/10.1016/j.envint.2006.06.013
Maingi, J. K., Henry, M. C., 2007. Factors influencing wildfire occurrence and distribution in eastern Kentucky, USA. International Journal of Wildland Fire 16(1), 23. https://doi.org/10.1071/WF06007 DOI: https://doi.org/10.1071/WF06007
Martelo-Jiménez, N., Vargas Ríos, O., 2022. Evaluación del riesgo a incendios de la cobertura vegetal del Santuario de Fauna y Flora Iguaque (Boyacá, Colombia). Cadalsia 44 (2), 380-393. https://doi.org/10.15446/caldasia.v44n2.91115 DOI: https://doi.org/10.15446/caldasia.v44n2.91115
Morante-Carballo, F., Bravo-Montero, Lady, Carrión-Mero, P., Velastegui-Montoya, A., Berrezueta, E., 2022. Forest Fire Assessment Using Remote Sensing to Support the Development of an Action Plan Proposal in Ecuador. Remote Sensing 14(8), 1783. https://doi.org/10.3390/rs14081783 DOI: https://doi.org/10.3390/rs14081783
Naderpour, M., Rizeei, H. M., Ramezani, F., 2021. Forest Fire Risk Prediction: A Spatial Deep Neural Network-Based Framework. Remote Sensing 13(13), 2513. https://doi.org/10.3390/rs13132513 DOI: https://doi.org/10.3390/rs13132513
Pazmiño, D., 2019. Peligro de incendios forestales asociado a factores climáticos en Ecuador. FIGEMPA: Investigación y Desarrollo 1(1), 10-18. https://doi.org/10.29166/revfig.v1i1.1800 DOI: https://doi.org/10.29166/revfig.v1i1.1800
Reyes-Bueno, F., Loján-Córdova, J., 2022. Assessment of Three Machine Learning Techniques with Open-Access Geographic Data for Forest Fire Susceptibility Monitoring-Evidence from Southern Ecuador. Forests 13(3), 474. https://doi.org/10.3390/f13030474 DOI: https://doi.org/10.3390/f13030474
Rodrigues, M., Jiménez-Ruano, A., Peña-Angulo, D., De La Riva, J., 2018. A comprehensive spatial-temporal analysis of driving factors of human-caused wildfires in Spain using Geographically Weighted Logistic Regression. Journal of Environmental Management 225, 177-192. https://doi.org/10.1016/j.jenvman.2018.07.098 DOI: https://doi.org/10.1016/j.jenvman.2018.07.098
Saaty, T. L., 1980. The analytic hierarchy process: Planning, priority setting, resource allocation. McGraw-Hill, New York London.
Servicio Nacional de Gestión de Riesgos y Emergencias, 2022. Informe de Situación No. 10 de Incendios Forestales a nivel Nacional 2022. https://www.gestionderiesgos.gob.ec/wp-content/uploads/downloads/2022/10/SITREP-No-10-Incendios-Forestales-01012022-a-31102022.pdf
Sivrikaya, F., Küçük, Ö., 2022. Modelling forest fire risk based on GIS-based analytical hierarchy process and statistical analysis in Mediterranean region. Ecological Informatics 68, 101537. https://doi.org/10.1016/j.ecoinf.2021.101537 DOI: https://doi.org/10.1016/j.ecoinf.2021.101537
Tebbutt, C. A., Devisscher, T., Obando‐Cabrera, L., Gutiérrez García, G. A., Meza Elizalde, M. C., Armenteras, D., Oliveras Menor, I., 2021. Participatory mapping reveals socioeconomic drivers of forest fires in protected areas of the post‐conflict Colombian Amazon. People and Nature 3(4), 811-826. https://doi.org/10.1002/pan3.10222 DOI: https://doi.org/10.1002/pan3.10222
Tehrany, M. S., Pradhan, B., Jebur, M. N., 2015. Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stochastic Environmental Research and Risk Assessment 29(4), 1149-1165. https://doi.org/10.1007/s00477-015-1021-9 DOI: https://doi.org/10.1007/s00477-015-1021-9
Thorhnwaite, C., Matter, J., 1955. The water balance, publication in climatology. Centerton. Drexel Institute of Technology.
Thornthwaite, C. W., 1948. An approach toward a rational classification of climate. Geographical Review 38(1), 55-94. DOI: https://doi.org/10.2307/210739
Tyukavina, A., Potapov, P., Hansen, M. C., Pickens, A. H., Stehman, S. V., Turubanova, S., Parker, D., Zalles, V., Lima, A., Kommareddy, I., Song, X.-P., Wang, L., Harris, N., 2022. Global Trends of Forest Loss Due to Fire From 2001 to 2019. Frontiers in Remote Sensing 3, 825190. https://doi.org/10.3389/frsen.2022.825190 DOI: https://doi.org/10.3389/frsen.2022.825190
Úbeda, X., Sarricolea, P., 2016. Wildfires in Chile: A review. Global and Planetary Change 146, 152-161. https://doi.org/10.1016/j.gloplacha.2016.10.004 DOI: https://doi.org/10.1016/j.gloplacha.2016.10.004
Vélez Muñoz, R., 2000. Las quemas incontroladas como causa de incendios forestales. Cuadernos de la Sociedad Española de Ciencias Forestales 9, 13-26. https://doi.org/10.31167/csef.v0i9.9179
Zambon, I., Cerdà, A., Cudlin, P., Serra, P., Pili, S., Salvati, L., 2019. Road Network and the Spatial Distribution of Wildfires in the Valencian Community (1993–2015). Agriculture 9(5), 100. https://doi.org/10.3390/agriculture9050100 DOI: https://doi.org/10.3390/agriculture9050100
Zhao, P., Zhang, F., Lin, H., Xu, S., 2021. GIS-Based Forest Fire Risk Model: A Case Study in Laoshan National Forest Park, Nanjing. Remote Sensing 13(18), 3704. https://doi.org/10.3390/rs13183704 DOI: https://doi.org/10.3390/rs13183704
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Paul Arias-Muñoz, Luis Chuma-Pomasqui, Pablo Coronado Cacuango, Gabriel Jácome-Aguirre

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El autor o autora conserva todos los derechos sobre su artículo y cede a la revista el derecho de la primera publicación, no siendo necesaria la autorización de la revista para su difusión una vez publicado. Una vez publicada la versión del editor el autor está obligado a hacer referencia a ella en las versiones archivadas en los repositorios personales o institucionales.
El artículo se publicará con una licencia Creative Commons de Atribución, que permite a terceros utilizar lo publicado siempre que se mencione la autoría del trabajo y la primera publicación en esta revista.
Se recomienda a los autores/as el archivo de la versión de editor en repositorios institucionales.