Avances en la cartografía de alta resolución de usos del suelo
metodologías y aprendizajes del proyecto H2020 RethinkAction
DOI:
https://doi.org/10.18172/cig.6415Palabras clave:
usos del suelo, GEOBIA, análisis espacial, teledetección, cartografía de alta resoluciónResumen
La cartografía de uso y cobertura del suelo (LULC, por sus siglas en inglés) es fundamental para las estrategias de adaptación y mitigación del cambio climático basadas en el territorio. Este estudio presenta el desarrollo de mapas de uso del suelo de alta resolución (HR) a 10 metros en el marco del proyecto RethinkAction H2020, con el objetivo de mejorar la planificación espacial orientada a la mitigación y adaptación climática. La metodología integra datos de teledetección, técnicas de clasificación mediante aprendizaje automático y conjuntos de datos auxiliares para generar clasificaciones precisas y transferibles del uso del suelo en seis regiones bioclimáticas europeas. El estudio emplea imágenes de Sentinel-2 y Landsat-8, utilizando clasificación supervisada con Random Forest (RF) y análisis geográfico basado en objetos (GEOBIA) para mejorar la precisión y reducir la confusión espectral. Este enfoque dio lugar a la creación de doce mapas HR de uso del suelo en dos niveles de clasificación, abarcando seis áreas de estudio de caso (CS). Una contribución clave de esta investigación es la generación de mapas de idoneidad, que evalúan el potencial para implementar soluciones de mitigación y adaptación basadas en el suelo (LAMS), como la reforestación, la captación de agua y el desarrollo de energía fotovoltaica. Este estudio subraya la importancia de integrar teledetección, aprendizaje automático y análisis espacial para respaldar la toma de decisiones fundamentadas en la planificación del uso del suelo, ofreciendo una metodología escalable y replicable para la clasificación detallada de LULC.
Descargas
Citas
Azores: National Geographic Information System (SNIG). Regional Secretariat for the Environment and Climate Change/Government of the Azores. 2018. Carta de Ocupação do Solo de 2018 - Região Autónoma dos Açores (RAA) [Cartography]. 1:25:000.
Beshir, S., Moges, A., Donato, M. 2023. Trend analysis, past dynamics and future prediction of land use and land cover change in upper Wabe-Shebele river basin. Heliyon, 9. https://doi.org/10.1016/j.heliyon.2023.e19128
Blaschke, T. 2010. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2-16. https://doi.org/10.1016/j.isprsjprs.2009.06.004
Breiman, L. 2001. Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Costa, H., Benevides, P., Moreira, F.D., Moraes, D., Caetano, M. 2022. Spatially stratified and multi-stage approach for national land cover mapping based on Sentinel-2 data and expert knowledge. Remote Sensing, 14, 1865. https://doi.org/10.3390/rs14081865
Duro, D.C., Franklin, S.E., Dube, M.G. 2012. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sensing of Environment, 118, 259-272. https://doi.org/10.1016/j.rse.2011.11.020
European Space Agency (ESA). 2024. Land use mapping is an invaluable tool in the realm of climate change mitigation, serving as a foundational element for greenhouse gas inventories. Retrieved from https://climate.esa.int/de/neuigkeiten-und-veranstaltungen/high-resolution-maps-reveal-real-world-land-use-change/
Gao, B.C. 1996. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257-266. https://doi.org/10.1016/S0034-4257(96)00067-3
García, M.L., Torres, R.J., Silva, D.P. 2023. Evaluating Sentinel-2 and Landsat-8 imagery for land cover classification in heterogeneous landscapes. Remote Sensing Applications: Society and Environment, 27, 100375. https://doi.org/10.1016/j.rsase.2023.100375
Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., ..., Chen, J. 2020. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. International Journal of Remote Sensing, 41(6), 2000–2022. https://doi.org/10.1080/01431161.2020.1724202
Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., ..., Townshend, J.R. G. 2013. High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850–853. https://doi.org/10.1126/science.1244693
Haralick, R.M. 1979. Statistical and structural approaches to texture. Proceedings of the IEEE, 67(5), 786-804.
Holtgrave, A.K., Röder, N., Ackermann, A., Erasmi, S., Kleinschmit, B. 2020. Comparing Sentinel-1 and -2 data and indices for agricultural land use monitoring. Remote Sensing, 12(18), 2919. https://doi.org/10.3390/rs12182919
Huang, X., Li, J., Zhang, J. 2021. A comparative assessment of Landsat-8 and Sentinel-2 for land cover classification in urban environments. International Journal of Remote Sensing, 42(18), 3576-3592. https://doi.org/10.1080/01431161.2021.1911432
Hussain, M., Chen, D., Cheng, A., Wei, H., Stanley, D. 2013. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS Journal of Photogrammetry and Remote Sensing, 80, 91-106. https://doi.org/10.1016/j.isprsjprs.2013.03.006
Jones, B., Kumar, S. 2020. The use of NDVI in land cover classification: A review of applications and challenges. Journal of Remote Sensing & GIS, 9(2), 29-41. https://doi.org/10.1080/01431161.2020.1850203
Khan, H., Ali, I. 2021. Geographic Object-Based Image Analysis for Small Farmlands Using Sentinel-2 Imagery. Pakistan Journal of Science, 72(1), 1-10. https://doi.org/10.53560/PPASA(60-1)795
Liu, H., Wang, Z., Chen, Y. 2022. Integrating spectral indices and machine learning for accurate land cover classification: A case study using Sentinel-2 and Landsat-8. ISPRS Journal of Photogrammetry and Remote Sensing, 189, 12-28. https://doi.org/10.1016/j.isprsjprs.2022.02.006
Miranda, H.D., Mutiara, A.B. 2018. Classification of land cover from Sentinel-2 imagery using supervised classification technique: Preliminary study. Proceedings of the 2018 International Conference on Applied Engineering (ICAE), 1-5. https://doi.org/10.1109/INCAE.2018.8579398
Patankar, N., Sarkela-Basset, X., Schivley, G., Leslie, E., Jenkins, J. 2022. Land use trade-offs in decarbonization of electricity generation in the American West. arXiv preprint.
PCI Catalyst Help platform. 2021. Retrieved from https://catalyst.earth/catalyst-system-files/help/
PCI Geomatics Enterprises, Inc. 2022. Retrieved from https://catalyst.earth/catalyst-system-files/help/
Ramezan, C.A., Warner, T.A., Maxwell, A. E., Price, B.S. 2021. Effects of training set size on supervised machine learning land-cover classification of large-area high-resolution remotely sensed data. Remote Sensing, 13, 368. https://doi.org/10.3390/rs13030368
RethinkAction Project (2024). RethinkAction project. CRoss-sEcToral planning decisIoN-maKing platform to foster climate Action. Retrieved from https://zenodo.org/communities/rethinkaction/
Tang, K., Zhu, H., Ni, P. 2021. Spatial downscaling of land surface temperature over heterogeneous regions using random forest regression considering spatial features. Remote Sensing, 13, 3645. https://doi.org/10.3390/rs13183645
Wu, W., De Pauw, E. 2011. A simple algorithm to identify irrigated croplands by remote sensing. Proceedings of the 34th International Symposium on Remote Sensing of Environment (ISRSE), Sydney, Australia (pp. 10-15). Arinex.
You, X., Meng, J., Zhang, M., Dong, T. 2013. Remote sensing-based detection of crop phenology for agricultural zones in China using a new threshold method. Remote Sensing, 5(7), 3190-3211. https://doi.org/10.3390/rs5073190
Zhang, Q., Yu, X., Tang, W. 2022. Advances in remote sensing-based land cover classification: A review of Sentinel-2 and Landsat-8 applications. Environmental Monitoring and Assessment, 194, 123. https://doi.org/10.1007/s10661-022-09879-7
Zhao, X., Tan, W., Guo, H., Wang, L., Wu, X. 2022. Urban expansion monitoring using Sentinel-2 imagery and deep learning methods. Remote Sensing, 14(2), 398. https://doi.org/10.3390/rs14020398
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Christoph Correia, Jesús Ortuño Castillo , Marta Toro Bermejo, Patricia Perez Ramirez

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El autor o autora conserva todos los derechos sobre su artículo y cede a la revista el derecho de la primera publicación, no siendo necesaria la autorización de la revista para su difusión una vez publicado. Una vez publicada la versión del editor el autor está obligado a hacer referencia a ella en las versiones archivadas en los repositorios personales o institucionales.
El artículo se publicará con una licencia Creative Commons de Atribución, que permite a terceros utilizar lo publicado siempre que se mencione la autoría del trabajo y la primera publicación en esta revista.
Se recomienda a los autores/as el archivo de la versión de editor en repositorios institucionales.