Evaluación del diseño y gestión de áreas protegidas
Geografía del paisaje en Lomas y Tillandsiales del Suroeste Peruano
DOI:
https://doi.org/10.18172/cig.6451Palabras clave:
ecologia, conservación, oasis de neblina, morfometría, geomorfologiaResumen
Los ecosistemas del desierto costero como las Lomas y Tillandsiales son fundamentales para el bienestar de las poblaciones locales, ya que proporcionan bienes y servicios ecosistémicos importantes, como la regulación climática o el suministro de agua entre otros, siendo considerados como importantes objetos de conservación a nivel nacional. A pesar de esto, en Tacna, estos ecosistemas vienen siendo impactados y degradados ecológicamente por el desordenado crecimiento poblacional y la poca regulación de actividades humanas, como la agricultura, minería y uso pecuario, por lo que es necesario implementar estrategias de conservación. Sin embargo, cuando las entidades del estado realizan la delimitación de territorios para futuras áreas protegidas, se prioriza el uso actual, se excluyen los derechos de aprovechamiento otorgados, y no se consideran los criterios geográficos o los atributos ecológicos de estos importantes ecosistemas, lo que pone en discusión su efectividad. Por ello, utilizando diversas herramientas geográficas, se evaluaron los polígonos propuestos por las autoridades regionales como nueva área protegida comparándolos con los del ecosistema natural, demostrándose diferencias entre los índices geográficos, ecológicos y las métricas del paisaje, evidenciándose una cada vez menor similitud ecológica y posiblemente una menor efectividad para su conservación. Se observó que existen variaciones entre sus rangos de diversidad geomorfológica y morfométrica que llegan en casos extremos hasta un 56% de coeficiente de variabilidad para el índice de Gravelius, 52% para el de altitud y el 43% para el del índice de protección morfométrica. Éstos son factores muy importantes que tienen una alta correlación con la biodiversidad, los procesos ecológicos y la provisión de servicios ecosistémicos, objetivos principales para la conservación. A partir de estas diferencias planteamos que esta nueva área de conservación sería deficiente en el cumplimiento de sus objetivos. Sin embargo, proponemos que, una vez declarada como tal, la entidad administradora deberá diseñar e implementar un modelo de gestión que contemple prioritariamente la ampliación hacia limites naturales, la implementación de medidas de restauración y el monitoreo permanente de las métricas presentadas en la presente investigación, bajo el principio de que la conservación no solo es la declaración de un ámbito espacial en la categoría de reserva, sino en la necesidad de definir dichos espacios en base a herramientas y conocimientos geográficos que garanticen la efectiva protección y conservación de los ecosistemas de Lomas y Tillandsiales.
Descargas
Citas
Ahmadzadeh, R., Dehdar Dargahi, M., Khorasani, N., Farsad, F., Rahimibashar, M. R., 2023. Assessment of wetland landscape changes based on landscape metrics and trophic state index (case study: Anzali International Wetland). Environmental Monitoring and Assessment 195(10), 1206. https://doi.org/10.1007/s10661-023-11672-1
Alaska Satellite Facility, 2024. About ASF. https://asf.alaska.edu/about/
Andrade, A., 2007. Aplicación del Enfoque Ecosistémico en Latinoamérica. CEM-UICN. Bogotá, Colombia. https://portals.iucn.org/library/sites/library/files/documents/CEM-007.pdf
Bendjoudi, H., Hubert, P., 2002. Le coefficient de compacité de Gravelius: analyse critique d’un indice de forme des bassins versants. Hydrological Sciences Journal 47(6), 921-930. https://doi.org/10.1080/02626660209493000
Bivand, R., Pebesma, E., Gomez-Rubio, V., 2013. Applied spatial data analysis with R, Second edition. Springer, NY. https://asdar-book.org/
Ceballos, A. M., 2015. Combinación de información Topográfica-Estructural Lidar y Teledetección hiperespectral para estimar la Diversidad Florística Vascular de un Bosque Mediterráneo Caducifolio en la Precordillera Andina del Maule, Chile. Facultad de Ciencias Agronómicas, Universidad de Chile.
Chacoff, N., Morales, J., Vaquera, M., 2006. Efectos de la Fragmentación Sobre la Absorción y Depredación de Semillas en el Chaco Serrano. Biotropica 36, 109-117. https://doi.org/10.1111/j.1744-7429.2004.tb00301.x
CMIP6, 2022. Coupled Model Intercomparison Project Phase 6. https://pcmdi.llnl.gov/CMIP6/TermsOfUse/TermsOfUse6-1.html
Decreto Supremo N° 043-2006-AG. (13 de julio de 2006). (D. O. Peruano, Editor) Aprueban categorización de especies amenazadas de flora silvestre. SENACE https://www.senace.gob.pe/wp-content/uploads/2016/10/NAT-3-3-03-DS-043-2006-AG.pdf
Diktaş Bulut, N., 2023. Human-Induced forest fragmentation in Trabzon, Eastern Black Sea Region, Türkiye: A case study. Forest 14(8), 1622. https://doi.org/10.13140/RG.2.2.35869.36322
Doherty, K. D., Kuhlman, M. P., Durham, R. A., Ramsey, P. W., Mummey, D. L., 2021. Fine-grained topographic diversity data improve site prioritization outcomes for bees. Ecological Indicators 132, 108315. https://doi.org/10.1016/j.ecolind.2021.108315
El Jeitany, J., Nussbaum, M., Pacetti, T., Schröder, B., Caporali, E., 2024. Landscape metrics as predictors of water-related ecosystem services: Insights from hydrological modeling and data-based approaches applied on the Arno River Basin, Italy. Science of the Total Environment 954, 176567. https://doi.org/10.1016/j.scitotenv.2024.176567
El Peruano, 2024, (10 de 05 de 2024). Boletín oficial: Comunicado del Gobierno Regional de Tacna. https://epdoc2.elperuano.pe/EpPo/Descarga.asp?
Evans, J.S., Murphy, M.A., 2023. spatialEco. R package version 2.0-2, https://github.com/jeffreyevans/spatialEco
Faye, C., Ndiaye, M., 2021. Use of geospatial tools in morphometric analysis and prioritisation of sub-catchments of the Soungrougrou (Casamance Basin). Quaestiones Geographicae 40(3), 65-84. https://doi.org/10.2478/quageo-2021-0024
Franco León, P., Navarro Guzmán, M. A., Oyague Passuni, E. J., Ignacio Apaza, J. M., Jove C., 2024. Fragmentation, birds, and conservation of the Polylepis Forest in Southern Peru. Cuadernos de Investigación Geográfica 50(1), e5823. https://doi.org/10.18172/cig.5823
Gascon C., Lovejoy, T.E., Bierregaard, R.O., Malcolm, J.R., Stouffer, P.C., Vasconcelos, H.L., Laurance, W.F., Zimmerman, B., Tocher, M., Borges, S., 1999. Matrix-habitat and species richness in tropical forest remnants. Biological Conservation 91(2-3), 223-229. https://doi.org/10.1016/s0006-3207(99)00080-4
Gobierno Regional de Tacna, 2024. Plataforma web para el servicio de información espacial del proceso de ordenamiento territorial del departamento de Tacna. https://geotakana.regiontacna.gob.pe/
Google LLC., 2024. Google Earth Pro (version 7.3.6). https://www.google.com/earth/
Harris, A., Baird, A. J., 2019. Microtopographic drivers of vegetation patterning in blanket peatlands recovering from erosion. Ecosystems 22, 1035-1054. https://doi.org/10.1007/s10021-018-0321-6
Hijmans, R., 2024. Raster: Geographic Data Analysis and Modeling_. R package version 3.6-30. https://CRAN.R-project.org/package=raster
Jeong, A., Kim, M., Lee, S., 2024. Analysis of priority conservation areas using habitat quality models and MaxEnt models. Animals 14(11), 1680. https://doi.org/10.3390/ani14111680
Kadam, A.K., Jaweed, T.H., Umrikar, B.N., 2017. Morphometric prioritization of semi-arid watershed for plant growth potential using GIS technique. Model. Earth Syst. Environ. 3, 1663–1673. https://doi.org/10.1007/s40808-017-0386-9
Kondo, K. F., Tchakala, I., Dadja-Toyou, G. M., Sambienou, W. G., Adandedji, F., Boukari, O., Mama, D., 2024. Contribution to the sustainable management of water and soil resources in North-West Benin: Characterization of the watershed heads of the Ouémé and Pendjari rivers in the commune of Copargo. European Scientific Journal 20(33), 353-372. https://doi.org/10.19044/esj.2024.v20n33p353
Lipori, M., Martín, G., 2022. Diseño, formas y modelos de las áreas destinadas a la conservación: Su incidencia sobre fragilidad individual y del sistema nacional de áreas protegidas de Argentina. Revista del Departamento de Geografía (UNC) 9(18), 109-136.
Lu, Z., Zhuang, Y., Zhang, Y., Zhang, S., 2024. Evaluation of landscape sustainability of protected areas and identification of its correlation factors: A case study of Beijing, China. Landscape Ecology 39, 98. https://doi.org/10.1007/s10980-024-01872-6
Macchioli Grande, M., Kaffas, K., Verdone, M., Borga, M., Cocozza, C., Dani, A., Errico, A., Fabiani, G., Gourdol, L., Klaus, J., Manca di Villahermosa, F.S., Massari, C., Murgia, I., Pfister, L., Preti, F., Segura, C., Tailliez, C., Trucchi, P., Zuecco, G., Penna, D., 2024. Seasonal meteorological forcing controls runoff generation at multiple scales in a Mediterranean forested mountain catchment. Journal of Hydrology 639, 131642. https://doi.org/10.1016/j.jhydrol.2024.131642
Madariaga Olivares, I. P., 2017. Evaluación del potencial de neblina mediante el sistema de atrapanieblas en las lomas de Ancón durante el evento del niño, en el distrito de Ancón, provincia de Lima periodo 2015-2016. Repositorio Universidad Nacional de Moquegua.
Mander, L., Dekker, S. C., Li, M., Mio, W., Punyasena, S. W., Lenton, T. M., 2017. A morphometric analysis of vegetation patterns in dryland ecosystems. Royal Society Open Science 4(2), 160443. https://doi.org/10.1098/rsos.160443
MacArthur, A., Wilson, E. O., 1963. An equilibrium theory of insular zoogeography. Evolution 17(4), 373-387. https://doi.org/10.2307/2407089
Ministerio del Ambiente, 2015. Mapa Nacional de Cobertura Vegetal. (Memoria descriptiva). https://www.gob.pe/institucion/minam/informes-publicaciones/2674-mapa-nacional-de-cobertura-vegetal-memoria-descriptiva
Ministerio del Ambiente, 2019. Mapa Nacional de Ecosistemas del Perú. https://sinia.minam.gob.pe/mapas/mapa-nacional-ecosistemas-peru
Miyashiro, M., Ortiz, M., 2016. Estimación mediante la teledetección de la variación de la cobertura vegetal en las lomas del distrito de Villa María del Triunfo por la expansión urbana y minera (1986-2014). Repositorio Universidad Nacional Mayor de San Marcos. https://hdl.handle.net/20.500.12672/5281
Navarro Guzmàn, M. A., Jove Chipana, C. A., Ignacio Apaza, J. M., 2020. Modelamiento de nichos ecológicos de flora amenazada para escenarios de cambio climático en el departamento de Tacna - Perú. Colombia forestal, 23 (1) https://doi.org/10.14483/2256201X.14866
Navarro Guzmàn, M. A., Pezo Sardon, M. A., Riveros Arteaga, G. C., Frisancho Soto, S. N., 2021. El planeamiento urbanístico contra el territorio: Fragmentación Antropogénica de los ecosistemas de Puna en el extremo sur del Perú. Estudios Geográficos 82 (390), e058. https://doi.org/10.3989/estgeogr.202070.070
QGIS Development Team, 2023. QGIS geographic information system. https://qgis.org
R Development Core Team, 2024. A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. https://www.r-project.org/
Rempel, R., Kaukinen, D., Carr, A., 2012. Patch Analyst and Patch Grid. Ontario Ministry of Natural Resources. Centre for Northern Forest Ecosystem Research, Thunder Bay, Ontario. https://learn.opengeoedu.de/en/monitoring/landschaftstrukturmasse/software/patch-analyst-arcmap-plugin
Santos, T., Tellería, J., 2006. Pérdida y fragmentación del hábitat: efecto sobre la conservación de las especies. Ecosistemas 15 (2). https://www.revistaecosistemas.net/index.php/ecosistemas/article/view/180
Saura, S., Pascual-Hortal, L., 2007. A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landscape and Urban Planning 83 (2-3), 91-103. https://doi.org/10.1016/j.landurbplan.2007.03.005
Speetjens, N. J., Hugelius, G., Gumbricht, T., 2023. The pan-Arctic catchment database (ARCADE). Earth System Science Data 15, 541–554. https://doi.org/10.5194/essd-15-541-2023
Tinajero, R., Rodríguez, R., 2012. Efectos de la fragmentación del matorral desértico sobre poblaciones del aguililla cola-roja y el cernícalo americano en Baja California Sur, México. Acta Zoológica Mexicana 28 (2). https://doi.org/10.21829/azm.2012.282844
Toivonen, J. M., Gonzales-Inca, C. A., Bader, M. Y., Ruokolainen, K., Kessler, M., 2018. Elevational shifts in the topographic position of Polylepis forest stands in the Andes of southern Peru. Forests 9(1), 7. https://doi.org/10.3390/f9010007
UICN, 2012. Categorías y criterios de la lista roja de la UICN. Versión 3.1. UICN. Gland, Suiza y Cambridge, Reino Unido. https://portals.iucn.org/library/sites/library/files/documents/RL-2001-001-2nd-Es.pdf
Valladares-Faúndez P, Franco-León P, Jove Chipana C, Navarro Guzmán M, Ignacio-Apaza J, Apaza JI, Cáceres Musaja C, Langstroth R, Aguilar-Kirigin A, Gutierrez, R.C., Abdala, C.S., 2021. A new lizard of the Liolaemus montanus group that inhabits the hyperarid desert of southern Peru. Amphibian & Reptile Conservation 15(2) [Taxonomy Section]: 10–22 (e278).
Verga, E., Peluc, S., Landi, M., Galetto, L., 2018. Forest fragmentation effect on potential food sources for birds in Córdoba. Ecología Austral. https://doi.org/10.25260/EA.18.28.2.0.429
Vila Subirós, J., Varga Linde, D., Llausàs Pascual, A., Ribas Palom, A., 2006. Conceptos y métodos fundamentales en ecología del paisaje (landscape ecology). Una interpretación desde la geografía. Documents d’Anàlisi Geogràfica 48, 151-166
Wang, H., Wang, J., Ni, J., Cui, Y., Yan, S., 2023. Spatial scale effects of integrated landscape indicators on river water quality in Chaohu Lake basin, China. Environmental Science and Pollution Research 30(45), 100892–100906. https://doi.org/10.1007/s11356-023-29482-w
Warren, D. L., Glor, R. E., Turelli, M., 2008. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution. International Journal of Organic Evolution 62 (11), 2868-2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x
With, K. A., 2019. Landscape effects on ecosystem structure and function. In Essentials of Landscape Ecology (Kimberley A. With, Ed). Oxford University Press. https://doi.org/10.1093/oso/9780198838388.003.0011
Wolff, J., Schauber, E., Edge, D., 1997. Effects of Habitat Loss and Fragmentation on the Behavior and Demography of Gray-Tailed Voles. Conservation Biology 11 (4), 945-956. https://doi.org/10.1046/j.1523-1739.1997.96136.x
Yu, M., Liu, Y., 2025. Landscape ecological integrity assessment to improve protected-area management of forest ecosystem. Ecologies 6(2), 38. https://doi.org/10.3390/ecologies6020038
Zhao, M., Zhou, Q., Luo, Y., Li, Y., Wang, Y., Yuan, E., 2024. Threshold effects between ecosystem services and natural and social drivers in karst landscapes. Land 13(5), 691. https://doi.org/10.3390/land13050691
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 The authors

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El autor o autora conserva todos los derechos sobre su artículo y cede a la revista el derecho de la primera publicación, no siendo necesaria la autorización de la revista para su difusión una vez publicado. Una vez publicada la versión del editor el autor está obligado a hacer referencia a ella en las versiones archivadas en los repositorios personales o institucionales.
El artículo se publicará con una licencia Creative Commons de Atribución, que permite a terceros utilizar lo publicado siempre que se mencione la autoría del trabajo y la primera publicación en esta revista.
Se recomienda a los autores/as el archivo de la versión de editor en repositorios institucionales.