Variabilidad de las cubiertas de nieve en la Cordillera Cantábrica (norte de España): un estudio a nivel de cuencas a partir de registros satelitales (2000-2024)

Autores/as

DOI:

https://doi.org/10.18172/cig.6543

Palabras clave:

nieve, variabilidad de la nieve, tendencia, Cordillera Cantábrica, cuencas hidrográficas

Resumen

 Este estudio analiza la dinámica de la cubierta de nieve en la Cordillera Cantábrica (norte de España), mediante imágenes satelitales, evaluando las fechas de aparición y fusión, extensión, duración y permanencia del manto nival. El área de estudio comprende 36 cuencas hidrográficas. Utilizando Google Earth Engine, se analizaron 14.082 imágenes satelitales (2000-2024) de MODIS-Terra, Landsat 5-8 y Sentinel-2 para crear clasificaciones diarias de la cubierta de nieve. Se extrajeron series temporales de la Fracción de Cubierta Nival (SCF) en intervalos de 500 metros de altitud en cada cuenca y se analizaron indicadores y tendencias.

Los resultados revelan reducciones en la extensión de la cubierta de nieve. En otoño, la extensión se reduce un 2%/década por encima de los 1.500 m. Se detectaron tendencias negativas notables, de hasta 16%/década en algunas cuencas en invierno, particularmente en la vertiente sur. En primavera, la tendencia es homogénea y estable (con algunas excepciones), aunque por encima de los 2.000 m, la extensión disminuye un 2,5%/década. La temporada de nieve se acorta por la ocurrencia más temprana de la Fecha de Última Fusión de Nieve Efímera (LESD), que avanza a 2,7 días/década frente al adelanto de 0,4 días/década de la Fecha de Primera Cubierta Nival Efímera (FESD). La duración de la primera cubierta de nieve de la temporada disminuyó por encima de los 1.500 m (9 días/década). El máximo estacional de la extensión de cubiertas de nieve tiende a ocurrir más tarde, y por encima de los 2.000 m es de menor duración debido a un retraso en el día de inicio de la cubierta de nieve más larga (SOD) y a una fusión más temprana de la cubierta de nieve más larga (SMOD). La máxima SCF ocurre entre el 22 de enero y el 5 de febrero, dependiendo de la altitud, y tiende a adelantarse, especialmente en altitudes más bajas. La duración media de las cubiertas de nieve es de 16,4 días, con gran variabilidad altitudinal (6,6 días en 500–1.000 m y 38,5 días por encima de 2.000 m), disminuyendo 1 día/década, con reducciones de hasta 5,8 días/década por encima de los 2.000 m, donde la duración de la cobertura nival más larga ha disminuido 8 días/década. La permanencia de la cubierta de nieve ha disminuido un 1,2%/década (un 3,4% por encima de los 1.500 m).

Aunque existen algunos sesgos, como períodos prolongados de nubosidad, alta cobertura forestal en algunas cuencas o la ocurrencia de eventos rápidos de acumulación y derretimiento de nieve no detectados por los satélites, los resultados revelan disminuciones en la duración, extensión y permanencia de la cubierta de nieve desde principios del s. XXI (aunque algunas no son estadísticamente significativas), particularmente por encima de los 1.500 m. Los cambios en los ciclos estacionales de la nieve en la Cordillera Cantábrica subrayan la necesidad de realizar investigaciones adicionales utilizando series temporales más largas u otros datos observacionales.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Adrián Melón-Nava, Universidad de León

Personal Investigador Predoctoral en Formación. Departamento de Geografía y Geologia, Universidad de León. Campus de Vegazana s/n, 24071, León, España

Amelia Gómez-Villar, Universidad de León

Profesora Titular de Universidad. Departamento de Geografía y Geología, Universidad de León. Campus de Vegazana s/n, 24071, León, España.

Citas

AEMET, 2018. Mapas climáticos de España (1981-2010) Y ETo (1996-2016). https://doi.org/10.31978/014-18-004-2

Alonso-González, E., López-Moreno, J.I., Navarro-Serrano, F.M., Revuelto, J., 2020. Impact of North Atlantic Oscillation on the Snowpack in Iberian Peninsula Mountains. Water 12, 105. https://doi.org/10.3390/W12010105

Barrou Dumont, Z., Gascoin, S., Inglada, J., Dietz, A., Köhler, J., Lafaysse, M., Monteiro, D., Carmagnola, C., Bayle, A., Dedieu, J.-P., Hagolle, O., Choler, P., 2024. Trends in the annual snow melt-out day over the French Alps and the Pyrenees from 38 years of high resolution satellite data (1986-2023), EGUsphere [preprint], https://doi.org/10.5194/EGUSPHERE-2024-3505

Beato Bergua, S., Poblete Piedrabuena, M.Á., Marino Alfonso, J.L., 2019. Snow avalanches, land use changes, and atmospheric warming in landscape dynamics of the Atlantic mid-mountains (Cantabrian Range, NW Spain). Applied Geography 107, 38-50. https://doi.org/10.1016/J.APGEOG.2019.04.007

Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L.M., Coppola, E., Eckert, N., Fantini, A., Giacona, F., Hauck, C., Huss, M., Huwald, H., Lehning, M., López-Moreno, J.I., Magnusson, J., Marty, C., Morán-Tejéda, E., Morin, S., Naaim, M., Provenzale, A., Rabatel, A., Six, D., Stötter, J., Strasser, U., Terzago, S., Vincent, C., 2018. The European mountain cryosphere: A review of its current state, trends, and future challenges. The Cryosphere 12, 759-794. https://doi.org/10.5194/TC-12-759-2018

Bonsoms, J., López-Moreno, J.I., Lemus-Cánovas, M., Oliva, M., 2025. Future winter snowfall and extreme snow events in the Pyrenees. Atmospheric Research 315, 107912. https://doi.org/10.1016/J.ATMOSRES.2025.107912

Bormann, K.J., Brown, R.D., Derksen, C., Painter, T.H., 2018. Estimating snow-cover trends from space. Nature Climate Change 8, 924-928. https://doi.org/10.1038/s41558-018-0318-3

Corripio, J.G., López-Moreno, J.I., 2017. Analysis and Predictability of the Hydrological Response of Mountain Catchments to Heavy Rain on Snow Events: A Case Study in the Spanish Pyrenees. Hydrology 4(2), 20. https://doi.org/10.3390/HYDROLOGY4020020

de Pablo Dávila, F., Rivas Soriano, L.J., Mora García, M., González-Zamora, Á., 2021. Characterization of snowfall events in the northern Iberian Peninsula and the synoptic classification of heavy episodes (1988–2018). International Journal of Climatology 41(1), 699-713. https://doi.org/10.1002/JOC.6646

Espinosa del Alba, C., Fernández-Pascual, E., Jiménez-Alfaro, B., 2025. Microclimatic variation regulates seed germination phenology in alpine plant communities. Journal of Ecology 113(1), 249-262. https://doi.org/10.1111/1365-2745.14461

Fernández-González, S., Del Río, S., Castro, A., Penas, A., Fernández-Raga, M., Calvo, A.I., Fraile, R., 2012. Connection between NAO, weather types and precipitation in León, Spain (1948-2008). International Journal of Climatology 32(14), 2181-2196. https://doi.org/10.1002/JOC.2431

García-Hernández, C., López-Moreno, J.I., 2024. Extreme snowfalls and atmospheric circulation patterns in the Cantabrian Mountains (NW Spain). Cold Regions Science and Technology 221, 104170. https://doi.org/10.1016/J.COLDREGIONS.2024.104170

Gascoin, S., Hagolle, O., Huc, M., Jarlan, L., Dejoux, J.F., Szczypta, C., Marti, R., Sánchez, R., 2015. A snow cover climatology for the Pyrenees from MODIS snow products. Hydrology and Earth System Sciences 19, 2337-2351. https://doi.org/10.5194/HESS-19-2337-2015

Gascoin, S., Luojus, K., Nagler, T., Lievens, H., Masiokas, M., Jonas, T., Zheng, Z., De Rosnay, P., 2024. Remote sensing of mountain snow from space: status and recommendations. Frontiers in Earth Science 12, 1381323. https://doi.org/10.3389/FEART.2024.1381323

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 202, 18-27. https://doi.org/10.1016/J.RSE.2017.06.031

Hall, D.K., Riggs, G.A., 2010. Normalized-Difference Snow Index (NDSI). Encyclopedia of Snow, Ice and Glaciers.

Hall, D.K., Riggs, G.A., Salomonson, V. V., 1995. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sensing of Environment 54(2), 127-140. https://doi.org/10.1016/0034-4257(95)00137-P

Hidalgo-Hidalgo, J.D., Collados-Lara, A.J., Pulido-Velazquez, D., Fassnacht, S.R., Husillos, C., 2024. Synergistic Potential of Optical and Radar Remote Sensing for Snow Cover Monitoring. Remote Sensing 16(19), 3705. https://doi.org/10.3390/RS16193705

Hori, M., Sugiura, K., Kobayashi, K., Aoki, T., Tanikawa, T., Kuchiki, K., Niwano, M., Enomoto, H., 2017. A 38-year (1978–2015) Northern Hemisphere daily snow cover extent product derived using consistent objective criteria from satellite-borne optical sensors. Remote Sensing of Environment 191, 402-418. https://doi.org/10.1016/J.RSE.2017.01.023

Illa, E., Pérez-Haase, A., Brufau, R., Font, X., 2022. Living on the edge: Plant diversity in the Iberian chionophilous vegetation. Applied Vegetation Science 25, e12701. https://doi.org/10.1111/AVSC.12701

Lemus-Canovas, M., Alonso-González, E., Bonsoms, J., López-Moreno, J.I., 2024. Daily concentration of snowfalls in the mountains of the Iberian Peninsula. International Journal of Climatology 44, 485-500. https://doi.org/10.1002/JOC.8338

López-Moreno, J.I., Soubeyroux, J.M., Gascoin, S., Alonso-Gonzalez, E., Durán-Gómez, N., Lafaysse, M., Vernay, M., Carmagnola, C., Morin, S., 2020. Long-term trends (1958–2017) in snow cover duration and depth in the Pyrenees. International Journal of Climatology 40(14), 6122-6136. https://doi.org/10.1002/JOC.6571

Malnes, E., Karlsen, S.R., Johansen, B., Bjerke, J.W., TØmmervik, H., 2016. Snow season variability in a boreal-Arctic transition area monitored by MODIS data. Environmental Research Letters 11(12), 125005. https://doi.org/10.1088/1748-9326/11/12/125005

Mata Olmo, R., Sanz Herráiz, C., 2003. Atlas de los paisajes de España. Ministerio de Medio Ambiente.

Melón-Nava, A., 2024. Recent Patterns and Trends of Snow Cover (2000–2023) in the Cantabrian Mountains (Spain) from Satellite Imagery Using Google Earth Engine. Remote Sensing 16(19), 3592. https://doi.org/10.3390/RS16193592

Meng, C., 2017. Quantifying the impacts of snow on surface energy balance through assimilating snow cover fraction and snow depth. Meteorology and Atmospheric Physics 129, 529-538. https://doi.org/10.1007/S00703-016-0486-5

Merino, A., Fernández, S., Hermida, L., López, L., Sánchez, J.L., García-Ortega, E., Gascón, E., 2014. Snowfall in the Northwest Iberian Peninsula: Synoptic Circulation Patterns and Their Influence on Snow Day Trends. The Scientific World Journal 2014, 480275. https://doi.org/10.1155/2014/480275

Monteiro, D., Morin, S., 2023. Multi-decadal analysis of past winter temperature, precipitation and snow cover data in the European Alps from reanalyses, climate models and observational datasets. The Cryosphere 17(8), 3617-3660. https://doi.org/10.5194/TC-17-3617-2023

Morán-Tejeda, E., Fassnacht, S.R., Lorenzo-Lacruz, J., López-Moreno, J.I., García, C., Alonso-González, E., Collados-Lara, A.J., 2019. Hydro-Meteorological Characterization of Major Floods in Spanish Mountain Rivers. Water 11, 2641. https://doi.org/10.3390/W11122641

Notarnicola, C., 2024. Snow cover phenology dataset over global mountain regions from 2000 to 2023. Data Brief 56, 110860. https://doi.org/10.1016/J.DIB.2024.110860

Notarnicola, C., 2020. Hotspots of snow cover changes in global mountain regions over 2000–2018. Remote Sensing of Environment 243, 111781. https://doi.org/10.1016/J.RSE.2020.111781

Ortega Villazán, M.T., Morales Rodríguez, C.G., 2015. El clima de la Cordillera Cantábrica castellano-leonesa: diversidad, contrastes y cambios. Investigaciones geográficas 63, 45-67. http://doi.org/10.14198/INGEO2015.63.04

Orusa, T., Viani, A., Cammareri, D., Borgogno Mondino, E., 2023. A Google Earth Engine Algorithm to Map Phenological Metrics in Mountain Areas Worldwide with Landsat Collection and Sentinel-2. Geomatics 3(1), 221-238. https://doi.org/10.3390/GEOMATICS3010012

Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Zhou, L., Wang, T., 2013. Change in snow phenology and its potential feedback to temperature in the Northern Hemisphere over the last three decades. Environmental Research Letters 8(1), 014008. https://doi.org/10.1088/1748-9326/8/1/014008

Pisabarro, A, Pisabarro, Alfonso, 2020. Snow cover as a morphogenic agent determining ground climate, landforms and runoff in the Valdecebollas massif, Cantabrian Mountains. Cuadernos de Investigación Geográfica 46, 81-102. https://doi.org/10.18172/cig.3823

Pons, M., López-Moreno, J.I., Rosas-Casals, M., Jover, 2015. The vulnerability of Pyrenean ski resorts to climate-induced changes in the snowpack. Clim Change 131, 591-605. https://doi.org/10.1007/S10584-015-1400-8

Revuelto, J., Alonso-González, E., Gascoin, S., Rodríguez-López, G., López-Moreno, J.I., 2021. Spatial Downscaling of MODIS Snow Cover Observations Using Sentinel-2 Snow Products. Remote Sens 13(22), 4513. https://doi.org/10.3390/RS13224513

Rittger, K., Painter, T.H., Dozier, J., 2013. Assessment of methods for mapping snow cover from MODIS. Advances in Water Resources 51, 367-380. https://doi.org/10.1016/J.ADVWATRES.2012.03.002

Salomonson, V. V., Appel, I., 2004. Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sensing of Environment 89(3), 351-360. https://doi.org/10.1016/J.RSE.2003.10.016

Santos González, J., Redondo Vega, J.M., Gómez Villar, A., González Gutiérrez, R.B., 2010. Avalanches in the Alto Sil (Western Cantabrian Mountain, spain). Cuadernos de Investigación Geográfica 36, 7-26. https://doi.org/10.18172/cig.1224

Sasaki, O., Miles, E.S., Pellicciotti, F., Sakai, A., Fujita, K., 2024. Contrasting patterns of change in snowline altitude across five Himalayan catchments. EGUsphere [preprint].. https://doi.org/10.5194/EGUSPHERE-2024-2026

Tang, Z., Deng, G., Hu, G., Zhang, H., Pan, H., Sang, G., 2022. Satellite observed spatiotemporal variability of snow cover and snow phenology over high mountain Asia from 2002 to 2021. Journal of Hydrology 613(8), 128438. https://doi.org/10.1016/J.JHYDROL.2022.128438

Tiede, D., Sudmanns, M., Augustin, H., Baraldi, A., 2021. Investigating ESA Sentinel-2 products’ systematic cloud cover overestimation in very high altitude areas. Remote Sensing of Environment 252, 112163. https://doi.org/10.1016/J.RSE.2020.112163

Ye, K., Wu, R., Liu, Y., 2015. Interdecadal change of Eurasian snow, surface temperature, and atmospheric circulation in the late 1980s. Journal of Geophysical Research: Journal of Egophysical Research: Atmospheres 120(7), 2595-3005. https://doi.org/10.1002/2015JD023148

Young, S.S., 2023. Global and Regional Snow Cover Decline: 2000-2022. Climate 11(8), 162. https://doi.org/10.3390/CLI11080162

Zhang, C., Jiang, L., 2022. Fractional Snow Cover Mapping with High Spatiotemporal Resolution based on Landsat, Sentinel-2 And Modis Observation. International Geoscience and Remote Sensing Symposium (IGARSS) 2022, 3935-3938. https://doi.org/10.1109/IGARSS46834.2022.9884171

Zhong, X., Zhang, T., Kang, S., Wang, J., 2021. Spatiotemporal variability of snow cover timing and duration over the Eurasian continent during 1966–2012. Science of The Total Environment 750, 141670. https://doi.org/10.1016/J.SCITOTENV.2020.141670

Descargas

Publicado

2025-06-30

Cómo citar

1.
Melón-Nava A, Gómez-Villar A. Variabilidad de las cubiertas de nieve en la Cordillera Cantábrica (norte de España): un estudio a nivel de cuencas a partir de registros satelitales (2000-2024). CIG [Internet]. 30 de junio de 2025 [citado 1 de agosto de 2025];51(1):7-31. Disponible en: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/6543

Número

Sección

Artículos