Climate regionalization and trends based on daily temperature and precipitation extremes in the south of the Pampas (Argentina)

Authors

  • F. Ferrelli Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET
  • A.S. Brendel Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET
  • V.S. Aliaga Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET
  • M.C. Piccolo Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET
  • G.M.E. Perillo Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET

DOI:

https://doi.org/10.18172/cig.3707

Keywords:

Short-term climatic variability, climatic sub-regions, trends, structural changes, south of Pampas

Abstract

The south of Pampas (36° 32’-40° 44’ S; 63° 24’-60° 30’ W), as most of Argentina, is a semiarid region. Its economy is based on rain-fed agriculture and livestock. Traditionally, the climate has been studied considering the analyses of monthly and annual climate parameters, but there is evidence that in this type of areas, the short-term climatic events have a substantial impact on the climate. Therefore, this study aimed at developing a climate regionalization from the analysis of daily temperature and precipitation extremes in the south of the Pampas for the period 1970-2017. Subsequently, it focuses on analyzing both trends and breakpoints of these events in the different sub-climates. To do so, we applied a Cluster-based Principal Component Analyses with a Ward hierarchical supervised method to generate a climate regionalization considering 29 daily extreme climatic indices and the elevation. We identify four sub-regions, and we analyzed trends during 1970-2017, and in the two-time series defined by applying breakpoints. Both minimum and maximum temperatures and precipitation had structural changes in the last 15 years, exposing the region to warming and dryness trends. The maximum temperature increases 0.5ºC, while precipitation decreases 30 mm. The short-term climate variability allows us to identify areas climatically more detailed and to conclude that the south of the Pampas is characterized by its high dependency on short-term climatic events.

Downloads

Download data is not yet available.

Author Biographies

F. Ferrelli, Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET

Research assistant (CONICET)

Teaching assistant (Geography and Tourism, UNS)

A.S. Brendel, Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET

PhD student (CONICET),

Teaching assistant (Agronomy, UNS)

V.S. Aliaga, Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET

Posdoc (IADO)

M.C. Piccolo, Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET

Superior Research (Senior Research) (CONICET)

Professor (Geography and Tourism, UNS)

G.M.E. Perillo, Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET

Superior Research (Senior Research) (CONICET)

Professor (Geology, UNS)

References

Abatan, A.A., Abiodun, B.J., Lawal, K.A., Gutowski, W.J. 2015. Trends in extreme temperature over Nigeria from percentile-based threshold indices. International Journal of Climatology 6 (6), 2527-2540. http://doi.org/10.1002/joc.4510.

Abbate, M.C.L., Molinero, J.C., Guinder, V.A., Perillo, G.M., Freije, R.H., Sommer, U., Spetter, C.V., Marcovecchio, J.E. 2017. Time-varying environmental control of phytoplankton in a changing estuarine system. Science of the Total Environment 609, 1390-1400. https://doi.org/10.1016/j.scitotenv.2017.08.002.

Abson, D.J., Dougill, A. J., Stringer, L.C. 2012. Using principal component analysis for information-rich socio-ecological vulnerability mapping in Southern Africa. Applied Geography 35 (1), 515-524. https://doi.org/10.1016/j.apgeog.2012.08.004.

Aliaga, V.S., Ferrelli, F., Alberdi-Algarañaz, E.D., Bohn, V.Y., Piccolo, M.C. 2016. Distribution and variability of precipitation in the Pampas, Argentina. Cuadernos de Investigación Geográfica 42 (1), 261-280. http://doi.org/10.18172/cig.2867.

Aliaga, V. S., Ferrelli, F., Piccolo, M. C. 2017. Regionalization of climate over the Argentine Pampas. International Journal of Climatology 37, 1237-1247. https://doi.org/10.1002/joc.5079.

Barrucand, M., Rusticucci, M. 2001. Climatología de temperaturas extremas en la Argentina. Variabilidad temporal y regional. Meteorológica 26 (1-2), 85-102.

Berndt, C., Haberlandt, U. 2018. Spatial interpolation of climate variables in Northern Germany— Influence of temporal resolution and network density. Journal of Hydrology: Regional Studies 15, 184-202.

Chen, A., He, X., Guan, H., Cai, Y. 2017. Trends and periodicity of daily temperature and precipitation extremes during 1960-2013 in Hunan Province, central south China. Theoretical and Applied Climatology 132 (1-2), 71-88. https://doi.org/10.1007/s00704-017-2069-x.

Fernández-Long, M.E., Barnatán. I.E., Spescha, L.B., Hurtado, R.H., Murphy, G.M. 2005. Caracterización de las heladas en la Región Pampeana y su variabilidad en los últimos 10 años. Revista Facultad de Agronomía 25 (3), 247-257.

Fernández-Long, M.E., Müller, G.V., Beltrán-Przekurat, A., Scarpati, O.E. 2013. Long-term and recent changes in temperature-based agroclimatic indices in Argentina. International Journal of Climatology 33 (7), 1673-1686. https://doi.org/10.1002/joc.3541.

Ferrelli, F. 2016. Efectos de eventos El Niño y La Niña sobre las lagunas del sur de la Región Pampeana (Argentina). InterEspaço: Revista de Geografia e Interdisciplinaridade 2, 122-142.

Ferrelli, F., Piccolo, M.C. 2017. Estudio del confort climático a escala micro-local. El caso de Bahía Blanca (Argentina). Bitácora Urbano Territorial 27 (3), 91-100. http://doi.org/10.15446/bitacora.v27n3.56995.

Gabella, J.L., Campo, A.M. 2016. Procesos de ocupación y construcción del espacio rural pampeano: el caso del partido de Patagones. Huellas 20, 79-99. http://doi.org/10.19137/huellas.

Grassini, P., Thorburn, J., Burr, C., Cassman, K.G. 2011. High-yield irrigated maize in the Western U.S. Corn Belt: I. On-farm yield, yield potential, and impact of agronomic practices. Field Crops Research 120, 142-150. https://doi.org 10.1016/j.fcr.2010.09.012.

IPCC 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. In: C.B.V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, P.M. Midgley (Eds.), A special report of working groups I and II of the intergovernmental panel on climate change (IPCC). Cambridge University press, Cambridge, UK, and New York, USA, pp. 555-564.

IPCC 2013. Climate change 2013: The physical science basis. In: T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press: Cambridge, UK, and New York, USA, 1535 pp.

Irwin, S., Simonovic, S.P., Burn, D.H. 2017. Delineation of precipitation regions in two Canadian study areas: the role of the temporal resolution of the precipitation data. Hydrological Sciences Journal 62 (13), 2061-2071.

Kendall, M.G. 1975. Rank correlation methods. Griffin, London.

Kondrashov, D., Denton, R., Shprits, Y.Y, Singer, H.J. 2014. Reconstruction of gaps in the past history of solar wind parameters. Geophysical Research Letters 41 (8), 2702-2707. https://doi.org/10.1002/2014GL059741.

Lu, W., Atkinson, D.E., Newlands, N.K. 2017. ENSO climate risk: predicting crop yield variability and coherence using cluster-based PCA. Modeling Earth Systems and Environment 3 (4), 1343-1359. https://doi.org/10.1007/s40808-017-0382-0

Mann, H.B. 1945. Non-parametric tests against trend. Econométrica 13, 245-259. https://doi. org/10.2307/1907187.

Marzban, C., Sandgathe S. 2005. Cluster analysis for verification of precipitation fields. Weather and Forecasting 21, 824-838. https://doi.org/10.1175/WAF948.1.

Menafoglio, A., Secchi, P., Dalla, R.M. 2013. A Universal Kriging predictor for spatially dependent functional data of a Hilbert Space. Electronic Journal of Statistics 7, 2209-2240.

Menzel, A., Jakobi, G., Ahas, R., Scheifinger, H., Estrella, N. 2003. Variations of the climatological growing season (1951-2000) in Germany compared with other countries. International Journal of Climatology 23, 793-812. https://doi.org/10.1002/joc.915.

Monzón, J.P., Sadras, V.O., Abbate, P.A., Caviglia, O. P. 2007. Modeling management strategies for wheat-soybean double crops in the south-eastern Pampas. Field Crops Research 101, 44-52. https://doi.org/10.1016/j.fcr.2006.09.007.

O’Rourke, N., Psych, R., Hatcher, L. 2013. A step-by-step approach to using SAS for factor analysis and structural equation modeling. Sas Institute.

Peterson, T., Folland, C., Gruza, G., Hogg, W., Mokssit, A., Plummer, N. 2001. Report on the activities of the working group on climate change detection and related rapporteurs. World Meteorological Organization, Geneva, 146 pp.

Qamar, M.U., Azmat, M., Shahid, M.A., Ganora, D., Ahmad, S., Cheema, M.J.M., Faiz, M.A., Sarwar, A., Shafeeque, M., Khan, M.I. 2017. Rainfall extremes: a novel modeling approach for regionalization. Water Resources Management 31 (6), 1975-199.

Reynolds, J.F., Maestre, F.T., Huber-Sannwald, E., Herrick, J., Kemp, P.R. 2005. Aspectos socioeconómicos y biofísicos de la desertificación. Revista Ecosistemas 14 (3), 4-21.

Ruml, M., Gregorić, E., Vujadinović, M., Radovanović, S., Matović, G., Vuković, A., Pocuca, V. and Stojičić, D. 2017. Observed changes of temperature extremes in Serbia over the period 1961− 2010. Atmospheric Research 183, 26-41 10.1016/j.atmosres.2016.08.01.

Salguero-Gómez, R., Siewert, W., Casper, B.B., Tielbörger, K. 2012. A demographic approach to study the effects of climate change in desert plants. Philosophical Transactions of the Royal Society of London B: Biological Sciences 367(1606), 3100-3114. http://doi.org/10.1098/rstb.2012.0074.

Salman, S.A., Shahid, S., Ismail, T., Chung, E.S., Al-Abadi, A.M. 2017. Long-term trends in daily temperature extremes in Iraq. Atmospheric Research, 198, 97-107.

Sen, P. K. 1968. Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association 63 (324), 1379-1389. https://doi.org/10.2307/2285891. Shahid, S. 2010. Recent trends in the climate of Bangladesh. Climate Research 42 (3), 185-193. https:doi.org/10.3354/cr00889.

Shi, P., Sun, S., Gong, D., & Zhou, T. 2016. World regionalization of climate change (1961-2010). International Journal of Disaster Risk Science 7 (3), 216-226.

Shrestha, A.B., Bajracharya, S.R., Sharma, A.R., Duo, C., Kulkarni, A. 2017. Observed trends and changes in daily temperature and precipitation extremes over the Koshi river basin 1975-2010. International Journal of Climatology 37(2), 1066-1083.

Song, C., Pei, T., Zhou, C. 2014. The role of changing multiscale temperature variability in extreme temperature events on the eastern and central Tibetan Plateau during 1960-2008. International Journal of Climatology 34 (14), 3683-3701. https://doi.org/10.1002/joc.3935.

Taylor, M.H., Losch, M., Wenzel, M., Schröter, J. 2013. On the sensitivity of eld reconstruction and prediction using empirical orthogonal functions derived from Gappy data. Journal of Climate 26 (22), 9194-9205. https://doi.org/10.1175/JCLI-D-13-00089.1.

Tierney, J., Smerdon, J., Anchukaitis, K., Seager, R. 2013. Multidecadal variability in East African hydroclimate controlled by the Indian Ocean. Nature 493, 389-392. https://doi.org/10.1038/nature11785.

Vicente-Serrano, S.M., Zouber, A., Lasanta, T., Pueyo, Y. 2012. Dryness is accelerating degradation of vulnerable shrublands in semiarid Mediterranean environments. Ecological Monographs 82 (4), 407-428. https://doi.org/10.1890/11-2164.1.

Viglizzo, E.F. 2018. Cambio climático y seguridad alimentaria global: Oportunidades y amenazas para el sector rural argentino. Anales de la ANAV 69, 150-181.

Vincent, L.A., Mekis, E. 2006. Changes in daily and extreme temperature and precipitation indices for Canada over the twentieth century. Atmosphere-Ocean 44 (2), 177-193. https://doi. org/10.3137/ao.440205.

Wang, X.L., Wen, Q.H., Wu, Y. 2007. Penalized maximal t test for detecting undocumented mean change in climate data series. Journal of Applied Meteorology and Climatology 46, 916-931 https://doi.org/10.1175/JAM2504.1.

Wang, X.L. 2008a. Penalized maximal F-test for detecting undocumented mean shifts without trend-change. Journal of Atmospheric and Oceanic Technology 25, 368-384. https://doi. org/10.1175/2007JTECHA982.1.

Wang, X.L. 2008b. Accounting for autocorrelation in detecting mean-shifts in climate data series using the penalized maximal t or F test. Journal of Applied Meteorology and Climatology 47,2423-2444 https://doi.org/10.1175/2008JAMC1741.1.

Wang, X.L., Chen, H., Wu, Y., Feng, Y., Pu, Q. 2010. New techniques for the detection and adjustment of shifts in daily precipitation data series. Journal of Applied Meteorology and Climatology 49 (12), 2416-2436. https://doi.org/10.1175/2010JAMC2376.1.

Whan, K., Alexander, L.V., Imielska, A., McGree, S., Jones, D., Ene, E., Finaulahi, S., Inape, K., Jacklick, L., Kumar, R., Laurent, V., Malala, H., Malsale, P., Pulehetoa-Mitiepo, R., Ngemaes, M., Peltier, A., Porteous, A., Seuseu, S., Skilling, E., Tahani, L., Toorua, U., Vaiimene, M. 2013. Trends and variability of temperature extremes in the TropicalWestern Pacific. International Journal of Climatology 34 (8): 2585-603. https://doi.org/10.1002/joc.3861.

Westra, S., Alexander, L.V., Zwiers, F.W. 2013. Global increasing trends in annual maximum daily precipitation. Journal of Climate 26 (11), 3904-3918. https://doi.org/10.1175/JCLI-D-12-00502.1.

Worku, G., Teferi, E., Bantider, A., Dile, Y.T. 2018. Observed changes in extremes of daily rainfall and temperature in Jemma Sub-Basin, Upper Blue Nile Basin, Ethiopia. Theoretical and Applied Climatology 1-16. https://doi.org/10.1007/s00704-018-2412-x.

Zapperi, P.A. 2014. Caracterización del escurrimiento urbano en la ciudad de Bahía Blanca. Revista Universitaria de Geografía 3 (2), 125-150.

Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson, T. C., Trewin, B., Zwiers, F. W. 2011. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change 2 (6), 851-870. https://doi.org/10.1002/wcc.147.

Zhang, X., Yang, F. 2013 RClimDex (1.1) user manual. Available at http://cccma.Seos.Uvic.Ca/ETCCDI/software.shtml. (last access:14/04/2018).

Zhou, H., Aizen, E., Aizen, V. 2018. Constructing a long-term monthly climate data set in central Asia. International Journal of Climatology 38, 1463-1475. https:doi.org/10.1002/joc.5259.

Downloads

Published

18-06-2019

How to Cite

1.
Ferrelli F, Brendel A, Aliaga V, Piccolo M, Perillo G. Climate regionalization and trends based on daily temperature and precipitation extremes in the south of the Pampas (Argentina). CIG [Internet]. 2019 Jun. 18 [cited 2024 Apr. 24];45(1):393-416. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/3707

Issue

Section

Articles