Impact of heatwave events on latent and sensible surface heat flux and future perspectives in shallow lakes based on climate change models

M.B. Alfonso, A.S. Brendel, A.J. Vitale, M.C. Piccolo

Abstract


According to model projections, increases in the frequency and intensity of heatwaves are expected all over the world. This study analyzed, for the first time, the effect of heatwaves events on long-term surface latent (LE) and sensible heat fluxes (H) from two shallow lakes: La Salada lake (LS - 39°27′ S, 62°42′ W) and Sauce Grande lake (SG - 38°57′ S, 61°24′ W). The main drivers of LE and H are wind speed and direction, relative humidity, and the difference between air and water temperature. We found that the daily values of both fluxes were highly fluctuating. Mean daily H values ranged between -309.4 to 200.5 W m-2 and -78.6 to 104.8 W m-2 in LS and SG, respectively. LE oscillated between -152 and 463.9 W m-2 and between -59.2 and 360.1 W m-2 in LS and SG, respectively. Both fluxes decreased with the passage of heatwaves events, presenting a high variation in its amplitude. Changes up to 96% in mean daily LE and 671% in mean daily H for LS and up to 25% in LE and 987% in H for SG were accounted in days with heatwaves respect to regular ones. We analyzed the air temperature increase for both lakes under future global warming scenarios (RCP 4.5 y RCP 8.5), expecting higher amplitudes in heat fluxes. These results contribute to the development of lake models, as well as to water resources management in the future.

Keywords


Sensible heat flux; Latent heat flux; High-frequency; Heatwave; Shallow lake; Instrumented buoy

Full Text:

PDF

References


Alfonso, M.B., Brendel, A.S., Vitale, A.J., Seitz, C., Piccolo, M.C., Eduardo Perillo, G.M. 2018. Drivers of ecosystem metabolism in two managed shallow lakes with different salinity and trophic conditions: The Sauce Grande and La Salada Lakes (Argentina). Water (Switzerland) 10 (9), 1136. https://doi.org/10.3390/w10091136.

Alfonso, M.B., Zunino, J., Piccolo, M.C. 2017. Impact of water input on plankton temporal dynamics from a managed shallow saline lake. Annales de Limnologie 53, 391-400. https://doi.org/10.1051/limn/2017023.

Aliaga, V.S., Ferrelli, F., Piccolo, M.C. 2017. Regionalization of climate over the Argentine Pampas. International Journal of Climatology 37, 1237-1247. https://doi.org/10.1002/joc.5079.

Arvola, L., George, G., Livingstone, D.M., Järvinen, M., Blenckner, T., Dokulil, M.T., Jennings E., Aonghusa, C.N., Nõges, P., Nõges, T., Weyhenmayer, G.A. 2009. The Impact of the Changing Climate on the Thermal Characteristics of Lakes. In: D.G. George (Ed.), The Impact of Climate Change on European Lakes, pp. 85-101. https://doi.org/10.1007/978-90-481-2945-4_6.

Barros, V.R., Boninsegna, J.A., Camilloni, I.A., Chidiak, M., Magrín, G.O., Rusticucci, M. 2015. Climate change in Argentina: Trends, projections, impacts and adaptation. Wiley Interdisciplinary Reviews: Climate Change 6 (2), 151-169. https://doi.org/10.1002/wcc.316.

Blanken, P.D., Rouse, W.R., Schertzer, W.M. 2003. Enhancement of evaporation from a large Northern Lake by the entrainment of warm, dry air. Journal of Hydrometeorology 4 (4), 680-693. https://doi.org/10.1175/1525-7541(2003)004<0680:EOEFAL>2.0.CO;2.

Base de Datos Climáticos 3ra. Comunicación Nacional de la República Argentina a la Convención Marco de las Naciones Unidas sobre Cambio Climático, Centro de Investigaciones del Mar y la Atmósfera, CIMA. http://3cn.cima.fcen.uba.ar (accessed 10 October, 2019).

Cook, B.I., Ault, T.R., Smerdon, J.E. 2015. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Science Advances 1 (1), 1-8. https://doi.org/10.1126/sciadv.1400082.

Davidson, T.A., Audet, J., Svenning, J.C., Lauridsen, T.L., Søndergaard, M., Landkildehus, F., larse, S.E., Jeppesen, E. 2015. Eutrophication effects on greenhouse gas fluxes from shallow-lake mesocosms override those of climate warming. Global Change Biology 21 (12), 4449-4463. https://doi.org/10.1111/gcb.13062.

Di Rienzo J.A., Casanoves F., Balzarini M.G., Gonzalez L., Tablada M., Robledo C.W. 2018. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar.

Diallo, I., Giorgi, F., Stordal, F. 2018. Influence of Lake Malawi on regional climate from a double-nested regional climate model experiment. Climate Dynamics 50 (9-10), 3397-3411. https://doi.org/10.1007/s00382-017-3811-x.

Diovisalvi, N., Salcedo Echeverry, G.E., Lagomarsino, L., Zagarese, H.E. 2015. Seasonal patterns and responses to an extreme climate event of rotifers community in a shallow eutrophic Pampean lake. Hydrobiologia 752 (1), 125-137. https://doi.org/10.1007/s10750-014-1909-2.

Downing, J.A., Prairie, Y.T., Cole, J.J., Duarte, C.M., Tranvik, L.J., Striegl, R.G., et al. 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography 51 (5), 2388-2397. https://doi.org/10.4319/lo.2006.51.5.2388.

Estación de Monitoreo Ambiental Costero, EMAC https://www.emac.iado-conicet.gob.ar/2019 (accessed 10 October 2019).

Fink, G., Schmid, M., Wüest, A. 2014. Large lakes as sources and sinks of anthropogenic heat: Capacities and limits. Water Resources Research 50 (9), 7285-7301. https://doi.org/10.1002/2014WR015509.

Fusé, V.S., Priano, M.E., Williams, K.E., Gere, J.I., Guzmán, S.A, Gratton, R., Juliarena, M.P. 2016. Temporal variation in methane emissions in a shallow lake at a southern mid latitude during high and low rainfall periods. Environmental Monitoring and Assessment 188, 590. https://doi.org/10.1007/s10661-016-5601-z.

Gao, Y., Fu, J.S., Drake, J.B., Liu, Y., Lamarque, J.F. 2012. Projected changes of extreme weather events in the eastern United States based on a high resolution climate modeling system. Environmental Research Letters 7 (4), 12 p. https://doi.org/10.1088/1748-9326/7/4/044025.

Geraldi, A, Piccolo, M.C, Perillo, G.M.E. 2011. El rol de las lagunas bonaerenses en el paisaje pampeano. Ciencia Hoy 21 (123), 16-22. Retrieved from https://ri.conicet.gov.ar/handle/11336/21369.

Havens, K., Paerl, H., Phlips, E., Zhu, M., Beaver, J., Srifa, A. 2016. Extreme weather events and climate variability provide a lens to how shallow lakes may respond to climate change. Water (Switzerland) 8 (6), 229. https://doi.org/10.3390/w8060229.

Huamantinco Cisneros, M. A., Piccolo, M.C. 2011. Caracterización de la brisa de mar en el balneario de Monte Hermoso, Argentina. Estudios Geográficos 72 (271), 461-475. https://doi.org/10.3989/estgeogr.201118.

Instituto Nacional de Tecnología Agropecuaria, INTA https://www.argentina.gob.ar/inta (accessed 10 October 2019).

IPCC, I. P. on C.C. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III.

Kendall, M. G. 1975. Rank Correlation Measures; Charles Griffin. London, 202 p.

Kraemer, B.M., Chandra, S., Dell, A.I., Dix, M., Kuusisto, E., Livingstone, D.M., Schladow, S.G., Silow, E., Sitoki, L.M., Tamatamah, R., McIntyre, P.B. 2017. Global patterns in lake ecosystem responses to warming based on the temperature dependence of metabolism. Global Change Biology 23 (5), 1881-1890. https://doi.org/10.1111/gcb.13459.

Lagomarsino, L., Pérez, G.L., Escaray, R., Bustingorry, J., Zagarese, H.E. 2011. Weather variables as drivers of seasonal phosphorus dynamics in a shallow hypertrophic lake (Laguna Chascomús, Argentina). Fundamental and Applied Limnology 178 (3), 191-201. https://doi.org/10.1127/1863-9135/2011/0178-0191.

Leira, M., Cantonati, M. 2008. Effects of water-level fluctuations on lakes: An annotated bibliography. Hydrobiologia 613, 171-184). https://doi.org/10.1007/s10750-008-9465-2.

Li, Z., Lyu, S., Ao, Y., Wen, L., Zhao, L., Wang, S. 2015. Long-term energy flux and radiation balance observations over Lake Ngoring, Tibetan Plateau. Atmospheric Research 155, 13-25. https://doi.org/10.1016/j.atmosres.2014.11.019.

Liu, H. P., Zhang, Q. Y., Dowler, G. 2012. Environmental controls on the surface energy budget over a large southern inland water in the United States: An analysis of one-year eddy covariance flux data. Journal of Hydrometeorology 13, 1893-1910. https://doi:10.1175/jhm-d-12-020.1.

Long, Z., Perrie, W., Gyakum, J., Caya, D., Laprise, R. 2007. Northern lake impacts on local seasonal climate. Journal of Hydrometeorology 8, 881-896. https://doi:10.1175/jhm591.1.

Mann, H. B. 1945. Non-parametric Tests Against Trend. Econometrica 13 (3), 245. https://doi.org/10.2307/1907187.

Oki, T., Kanae, S. 2006. Global hydrological cycles and world water resources. Science 313, 1068-1072. https://doi:10.1126/science.1128845.

Pohlert, T. 2018. Non-Parametric Trend Tests and Change-Point Detection, 1-18. http://docplayer.net/70194145-Non-parametric-trend-tests-and-change-point-detection.html.

Rennella, A., Quirós, R. 2006. The Effects of Hydrology on Plankton Biomass in Shallow Lakes of the Pampa Plain. Hydrobiologia 556, 181-191. https://doi.org/10.1007/s10750-005-0318-y.

Rouse, W.R., Oswald, C.M., Binyamin, J., Blanken, P.D., Schertzer, W.M., Spence, C. 2003. Interannual and seasonal variability of the surface energy balance and temperature of central Great Slave Lake. Journal of Hydrometeorology 4 (4), 720-730. https://doi.org/10.1175/1525-7541(2003)004<0720:IASVOT>2.0.CO;2.

Rusticucci, M., Kyselý, J., Almeira, G., Lhotka, O. 2016. Long-term variability of heat waves in Argentina and recurrence probability of the severe 2008 heat wave in Buenos Aires. Theoretical and Applied Climatology 124 (3-4), 679-689. https://doi.org/10.1007/s00704-015-1445-7.

Sen, P.K. 1968. Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association 63 (324), 1379-1389. https://doi.org/10.1080/01621459.1968.10480934.

Servicio Meteorológico Nacional, SMN https://www.smn.gob.ar/ (accessed 10 October 2019).

Shao, C., Chen, J., Stepien, C.A., Chu, H., Ouyang, Z., Bridgeman, T.B., Czajkowski, K.P., Becker, R.H., John, R. 2015. Diurnal to annual changes in latent, sensible heat, and CO2 fluxes over a Laurentian Great Lake: A case study in Western Lake Erie. Journal of Geophysical Research G: Biogeosciences 120 (8), 1587-1604. https://doi.org/10.1002/2015JG003025.

Tranvik, L.J., Downing, J.A., Cotner, J.B., Loiselle, S.A., Striegl, R.G., Ballatore, T.J., et al. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography 54 (6 PART 2), 2298-2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298.

Winder, M., Schindler, D.E. 2004. Climatic effects on the phenology of lake processes. Global Change Biology 10 (11), 1844-1856. https://doi.org/10.1111/j.1365-2486.2004.00849.x.

Woolway, R.I., Jones, I.D., Feuchtmayr, H., Maberly, S.C. 2015a. A comparison of the diel variability in epilimnetic temperature for five lakes in the English Lake District. Inland Waters 5 (2), 139-154. https://doi.org/10.5268/IW-5.2.748.

Woolway, R.I., Jones, I.D., Hamilton, D.P., Maberly, S.C., Muraoka, K., Read, J.S., Smyth, R.L., Winslow, L.A. 2015b. Automated calculation of surface energy fluxes with high-frequency lake buoy data. Environmental Modelling and Software 70, 191-198. https://doi.org/10.1016/j.envsoft.2015.04.013.

Woolway, R. I., Verburg, P., Lenters, J. D., Merchant, C. J., Hamilton, D. P., Brookes, J., et al. 2018. Geographic and temporal variations in turbulent heat loss from lakes: A global analysis across 45 lakes. Limnology and Oceanography 63 (6), 2436-2449. https://doi.org/10.1002/lno.10950.

Wüest, A., Lorke, A. 2003. Small-scale hydrodynamics in lakes. Annual Review of Fluid Mechanics 35 (1), 373-412. https://doi.org/10.1146/annurev.fluid.35.101101.161220.

Zhang, Q., Liu, H. 2013. Interannual variability in the surface energy budget and evaporation over a large southern inland water in the United States. Journal of Geophysical Research Atmospheres 118 (10), 4290-4302. https://doi.org/10.1002/jgrd.50435.

Zhao, X., Liu, Y. 2018. Variability of Surface Heat Fluxes and Its Driving Forces at Different Time Scales Over a Large Ephemeral Lake in China. Journal of Geophysical Research: Atmospheres 123 (10), 4939-4957. https://doi.org/10.1029/2017JD027437.

Zhu, C., Zeng, Y. 2018. Effects of urban lake wetlands on the spatial and temporal distribution of air PM10 and PM2.5 in the spring in Wuhan. Urban Forestry and Urban Greening 31, 142-156. https://doi.org/10.1016/j.ufug.2018.02.008.




DOI: https://doi.org/10.18172/cig.4456

Copyright (c) 2020 M.B. Alfonso, A.S. Brendel, A.J. Vitale, M.C. Piccolo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

© Universidad de La Rioja, 2013

ISSN 0211-6820

EISSN 1697-9540