Spatio-temporal variability monitoring of the floods in the center-west of the Buenos Aires Province (Argentina) using remote sensing techniques

F.I. Contreras, G.M. Mavo Mastretta, M.C. Piccolo, G.M.E. Perillo

Abstract


Floods are recurring events in Buenos Aires Province, mainly caused by high-intensity precipitation, and in some cases, they persist for long periods. The objective of this study is to analyze how the topography of the central-western portion of Buenos Aires Province determines the occurrence and the extent of floods. The presence of shallow lakes characterizes the area which is controlled by the topography. LANDSAT 5 and 8 images corresponding to periods of drought and flooding in the area were compared with topographic profiles and digital elevation models generated from SRTM 3 arc/sec data. The results showed that in those areas where there are aligned dunes, and after significant storm drain engineering works, during the wet periods, the lakes, their overflows, and the subsequent runoff to the east of Buenos Aires Province flow freely, limiting the flood areas. Due to this topography, the lakes became a more permanent feature of the landscape, even during extreme drought events. In contrast, in those areas where parabolic dunes predominate, the landscape is more affected by droughts and floods. During drought events, we observed a small number of shallow lakes, and during strong storms with high-intensity rainfall, the number of lakes increases and large flooded areas generate damage to agricultural fields and neighboring cities, either due to natural causes or improvised and illegal storm drains. Early warning of flood risks and a systematic territorial ordaining would be the key to the management of the area.

Keywords


Dunes; topography; floods; shallow lakes; runoff

Full Text:

Preprint (PDF)

References


Aliaga, V.S., Ferrelli, F., Alberdi Algañaraz, E.D., Piccolo, M.C., 2016. Distribución y variabilidad de la precipitación en la región Pampeana, Argentina. Cuadernos de Investigación Geográfica 42(1), 261-280. http://doi.org/10.18172/cig.2867.

Aliaga, V., Ferrelli, F., Piccolo, M.C., 2017. Regionalization of climate over the Argentine Pampas. International Journal of Climatology 37(1), 1237-1247. http://dx.doi.org/10.1002/joc.5079 .

Al-Masrahy, M.A., Mountney, N.P., 2013. Remote sensing of spatial variability in aeolian dune and interdune morphology in the Rub’ Al-Khali, Saudi Arabia. Aeolian Research 11, 155-170. https://doi.org/10.1016/j.aeolia.2013.06.004.

Barrineau, P., Dobreva, I., Bishop, M.P., Houser, C., Forman, S., 2019. Deconstructing aeolian landscapes. Catena 174, 452-468. https://doi.org/10.1016/j.catena. 2018.11.038.

Blumberg, D.G. 2006. Analysis of large aeolian (wind-blown) bedforms using the Shuttle Radar Topography Mission (SRTM) digital elevation data. Remote sensing of environment 100(2), 179-189. https://doi.org/10.1016/j.rse.2005.10.011.

Bubenzer, O., Bolten, A., 2008. The use of new elevation data (SRTM/ASTER) for the detection and morphometric quantification of Pleistocene megadunes (draa) in the eastern Sahara and the southern Namib. Geomorphology 102(2), 221-231. https://doi.org/10.1016/j.geomorph.2008.05.003.

Bullard, J.E., Livingstone, I. 2002. Interactions between aeolian and fluvial systems in dryland environments. Area 34(1), 8-16. https://doi.org/10.1111/1475-4762.00052.

Carrivick, J.L., Rushmer, E.L., 2006. Understanding high‐magnitude outburst floods. Geology Today 22(2), 60-65. https://doi.org/10.1111/j.1365-2451.2006.00554.x.

Charlton, R., 2007. Fundamentals of fluvial geomorphology. Routledge. London-New York, pp. 1-224.

Contreras, F.I., Mavo Manstretta, G.M., Perillo, G., Piccolo, M.C., 2018. Caracterización de médanos parabólicos de la región pampeana oriental, centro oeste de la provincia de Buenos Aires (Argentina). Latin American Journal of Sedimentology and Basin Analysis 25(1), 1-15.

Contreras, F.I., Paira, A.R., 2016. Aplicación del “índice de cambio” a las variaciones morfométricas de las lagunas de lomadas arenosas. El caso de Bella Vista (Corrientes, Argentina). Revista de Geografía 21, 31-38.

Courrech du Pont, S. 2015. Dune morphodynamics. Comptes Rendus Physique 16, 118- 138. https://doi.org/10.1016/j.crhy.2015.02.002.

Dangavs, N. 2005. Ambientes acuáticos de la provincia de Buenos Aires. Actas del XVI Congreso Geológico Argentino. Geología y Recursos Minerales de la provincia de Buenos Aires, 2019-2035.

Durán, O., Silva, M.V.N., Bezerra, L.J.C., Herrmann, H.J., Maia, L.P., 2008. Measurements and numerical simulations of the degree of activity and vegetation cover on parabolic dunes in north-eastern Brazil. Geomorphology 102(3-4), 460-471. https://doi.org/10.1016/j.geomorph.2008.05.011.

Ewing, R.C., Kocurek, G., 2010. Aeolian dune-field pattern boundary conditions. Geomorphology 114(3), 175-187. https://doi.org/10.1016/j.geomorph.2009.06.015.

Ewing, R.C., McDonald, G.D., Hayes, A.G., 2015. Multi-spatial analysis of aeolian dune-field patterns. Geomorphology 240, 44-53. https://doi.org/10.1016/j.geomorph. 2014.11.023.

Ferrelli, F., 2012. La sequía 2008-2009 en el sudoeste de la provincia de Buenos Aires (Argentina). Ecosistemas, 21, 235-238.

Ferrelli, F., Aliaga, V.S., 2016. Variabilidad de las precipitaciones y sus efectos sobre la respuesta espacio-temporal de cuerpos de agua en la Región Pampeana, Argentina. Huellas 20, 239-246.

Forman, S.L., Pierson, J., 2003. Formation of linear and parabolic dunes on the eastern Snake River Plain, Idaho in the nineteenth century. Geomorphology 56(1-2), 189-200. https://doi.org/10.1016/S0169-555X(03)00078-3.

Forte Lay, J., Scarpati O., Capriolo A., 2008. Precipitation variability and soil water content in Pampean Flatlands (Argentina). Geofísica Internacional 47(4), 341-354.

Frengüelli, J., 1956. Rasgos generales de la hidrografía de la provincia de Buenos Aires. Ministerio de Obras Públicas de la provincia de Buenos Aires. 17p.

Frot, E., Wesemael, B. 2009. Predicting runoff from semi-arid hillslopes as source areas for water harvesting in the Sierra de Gador, southeast Spain. Catena 79, 83-92. https://doi.org/10.1016/j.catena.2009.06.004.

Ho, L.T.K., Umitsu M., Yamaguchi Y., 2010. Flood hazard mapping by satellite images and SRTM DEM in the Vugia-Thu Bon alluvial plain, Central Vietnam. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Volume XXXVIII, Part 8, Kyoto, Japan.

Infocielo, 2017. Municipios en guerra por el agua: canales clandestinos y denuncias penales por inundaciones. Infocielo. http://www.infocielo.com/nota/83930/.

Iriondo, M.H., 1990. The map of the South American Plains. Its Present State. Quaternary of South America and Antarctic Peninsula 6, 297-306.

Ivester, A.H., Leigh, D.S., 2003. Riverine dunes on the coastal plain of Georgia, USA. Geomorphology 51(4), 289-311. https://doi.org/10.1016/S0169-555X(02)00240-4.

Kasprak, A., Bransky, N.D., Sankey, J.B., Caster, J., Sankey, T.T., 2019. The effects of topographic surveying technique and data resolution on the detection and interpretation of geomorphic change. Geomorphology 333, 1-15. https://doi.org/10.1016/j.geomorph.2019.02.020.

Kwak, Y., Kondoh, A., 2008. A study on the extraction of multi-factor influencing floods from RS image and GIS data; a case study in Nackdong basin, S. Korea. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37 (Part B8). Pp 421-425.

Labraga, J.C., Brandizi, L.D., López, M.A., 2011. Avances en el pronóstico climático de las anomalías de lluvia en la región pampeana. Meteorológica 36 (2), 59-71.

Liu, B., Coulthard, T.J., 2015. Mapping the interactions between rivers and sand dunes: implications for fluvial and aeolian geomorphology. Geomorphology 231, 246-257. https://doi.org/10.1016/j.geomorph.2014.12.011.

Maroulis, J.C., Nanson, G.C., Price, D.M., Pietsch, T., 2007. Aeolian–fluvial interaction and climate change: source-bordering dune development over the past ∼ 100 ka on Cooper Creek, central Australia. Quaternary Science Reviews 26(3-4), 386-404. https://doi.org/10.1016/j.quascirev.2006.08.010.

Mashimbye, Z.E., de Clercq, W.P., Van Niekerk, A., 2014. An evaluation of digital elevation models (DEMs) for delineating land components. Geoderma 213, 312-319. https://doi.org/10.1016/j.geoderma.2013.08.023.

McLaren, S. J., Al‐Juaidi, F., Bateman, M.D., Millington, A. C., 2009. First evidence for episodic flooding events in the arid interior of central Saudi Arabia over the last 60 ka. Journal of Quaternary Science 24(2), 198-207. https://doi.org/10.1002/jqs.1199.

Mehl, A., Tripaldi, A., Zárate, M., 2018. Late Quaternary aeolian and fluvial-aeolian deposits from southwestern Pampas of Argentina, southern South America. Palaeogeography, Palaeoclimatology, Palaeoecology 511, 280-297. https://doi.org/10.1016/j.palaeo.2018.08.014.

Meurisse, M., Van Vliet-Lanoë, B., Talon, B., Recourt, P., 2005. Holocene dune and peat complexes along the shore of northern France. Comptes Rendus Géoscience (337), 675-684.

Möller, M., Volk, M., Friedrich, K., Lymburner, L., 2008. Placing soil‐genesis and transport processes into a landscape context: A multiscale terrain‐analysis approach. Journal of Plant Nutrition and Soil Science 171(3), 419-430. https://doi.org/10.1002/jpln.200625039.

NOAA, 2020. Historical El Nino/ La Nina episodes (1950-present). Available at: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (last access: 18/05/2020).

Odriozola, M.P., Contreras, F.I., 2016. Distribución de las lagunas de la Lomada Norte basada en una clasificación no supervisada de imágenes satelitales LANDSAT 5 TM. En: F.I. Contreras y M.P. Odriozola, M.P. (Comp). Libro de la Junta de Geografía de la Provincia de Corrientes, 23-32.

Perillo, G.M.E., 2001. Hacia una nomenclatura y clasificación de formas de fondo transversales formadas por flujos de agua. Revista de la Asociación Argentina de Sedimentología 8(2), 15-34.

Pye, K., Tsoar, H., 2009. Eolian sand and sand dunes. Springer, pp. 1-475.

Quirós, R., Drago, E. 1999. The environmental state of Argentinean lakes: an overview. Lakes and Reservoirs 4(1‐2), 55-64. https://doi.org/10.1046/j.1440-1770.1999.00076.x.

Quirós, R., Rennella, A., Boveri, M., Rosso, J., Sosnovsky, A., 2002. Factores que afectan la estructura y el funcionamiento de las lagunas pampeanas. Ecología Austral 12, 175-185.

Saadouda, D., Hassanib, M., Peinadoc, F.J.M., Guettouchea, M. S., 2018. Application of fuzzy logic approach for wind erosion hazard mapping in Laghouat region (Algeria) using remote sensing and GIS. Aeolian Research 32, 24-34. https://doi.org/ 10.1016/j.aeolia.2018.01.002..

Sankey, J.B., Caster, J., Kasprak, A., East, A. E., 2018. The response of source-bordering aeolian dunefields to sediment-supply changes 2: Controlled floods of the Colorado River in Grand Canyon, Arizona, USA. Aeolian Research 32, 154-169. https://doi.org/10.1016/j.aeolia.2018.02.004.

Scarpati, O.E., Forte Lay, J.A., Capriolo, A.D., 2008. La inundación del año 2001 en la provincia de Buenos Aires, Argentina. Mundo Agrario 9(17).

Sierra, M.E., Fernández Long, M.E., Bustos, C., 1994. Cronología de inundaciones y sequías en el noreste de la provincia de Buenos Aires 1911-89. Revista de la Facultad de Agronomía 14(3), 241-249.

Somlyody, L., Varis, O., 2006. Freshwater under pressure. International Review for Environmental Strategies. 6(2), 181-204.

Sosnovsky, A., Quirós, R., 2006. El estado trófico de pequeñas lagunas pampeanas, su relación con la hidrología y el uso de la tierra. Ecología Austral 16, 115-124.

Stanistreet, I.G., Stollhofen, H., 2002. Hoanib River flood deposits of Namib Desert interdunes asanalogues for thin permeability barrier mudstone layers in aeolianite reservoirs. Sedimentology 49(4), 719-736. https://doi.org/10.1046/j.1365-3091.2002.00458.x.

Stutz, S., Tonello, M.S., González Sagrario, M.A., Navarro, D., Fontana, S.L., 2014. Historia ambiental de los lagos someros de la llanura Pampeana (Argentina) desde el Holoceno medio: Inferencias paleoclimáticas. Latin American Journal of Sedimentology and Basin Analysis 21, 119-138.

Taboada, M.A., Damiano, F., Lavado, R.S., 2009. Inundaciones en la Región Pampeana. Consecuencias sobre los suelos. Alteraciones de la fertilidad de los suelos: el halomorfismo, la acidez, el hidromorfismo y las inundaciones. EFA (Editorial Facultad de Agronomía), Universidad de Buenos Aires, Buenos Aires, pp 103-127.

Telfer, M.W., Fyfe, R.M., Lewin S., 2015. Automated mapping of linear dunefield morphometric parameters from remotely-sensed data. Aeolian Research 19, 215-224. https://doi.org/10.1016/j.aeolia.2015.03.001.

Thomas, D.S., Bailey, R. M., 2019. Analysis of late Quaternary dune field development in Asia using the accumulation intensity model. Aeolian Research 39, 33-46. https://doi.org/10.1016/j.aeolia.2019.04.005.

Tripaldi, A., Forman, S.L., 2007. Geomorphology and chronology of Late Quaternary dune fields of western Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 251(2), 300-320. https://doi.org/10.1016/j.palaeo.2007.04.007.

Tripaldi, A., Mehl, A., Zárate, M.A., 2018. Parabolic megadunes in a subtropical Quaternary inland dune field, southwestern Pampas, Argentina. Geomorphology, 321, 103-116. https://doi.org/10.1016/j.geomorph.2018.08.021.

Tripaldi, A., Zárate, M.A., 2016. A review of Late Quaternary inland dune systems of South America east of the Andes. Quaternary International, 410, 96-110. https://doi.org/10.1016/j.quaint.2014.06.069.

Tsoar, H., 2001. Types of aeolian sand dunes and their formation. In N. J. Balmforth and A. Provenzale (Ed.), Geomorphological fluid mechanics. Springer, Berlin, Heidelberg, pp. 403-429. https://doi.org/10.1007/3-540-45670-8_17.

UCOFIN, 2012. Fondo fiduciario de infraestructura hídrica. Ministerio de Hacienda de la República Argentina.

Vicente-Serrano, S.M., Zouber, A., Lasanta, T., Pueyo, Y., 2012. Dryness is accelerating degradation of vulnerable shrublands in semiarid Mediterranean environments. Ecological Monographs 82, 407-428. https://doi.org/10.1890/11-2164.1.

White, K., Bullard, J., Livingstone I., Moran L., 2015. A morphometric comparison of the Namib and southwest Kalahari dunefields using ASTER GDEM data. Aeolian Research, 19 (Part A), 87-95. https://doi.org/10.1016/j.aeolia.2015.09.006.

Xu, Z., Lu, H., Yi, S., Vandenberghe, J., Mason, J. A., Zhou, Y., Wang, X., 2015. Climate-driven changes to dune activity during the Last Glacial Maximum and deglaciation in the Mu Us dune field, north-central China. Earth and Planetary Science Letters 427, 149-159. https://doi.org/10.1016/j.epsl.2015.07.002 .

Yan, N., Baas, A.C., 2017. Environmental controls, morphodynamic processes, and ecogeomorphic interactions of barchan to parabolic dune Parabolic dunes and their transformations under environmental and climatic changes: Towards a conceptual framework for understanding and prediction. Global and Planetary Change 124, 123-148. https://doi.org/10.1016/j.geomorph.2016.10.033.

Yang, X., Liu T., Xiao, H., 2003. Evolution of megadunes and lakes in the Badain Jaran Desert, Inner Mongolia, China during the last 31,000 years. Quaternary International 104, 99-112. https://doi.org/10.1016/S1040-6182(02)00138-6 .

Yizhaq, H., Ashkenazy, Y., Tsoar, H., 2007. Why do active and stabilized dunes coexist under the same climatic conditions? Physical Review Letters, 98(18), 188001. https://doi.org/10.1103/PhysRevLett.98.188001.

Zeng, L., Yi, S., Lu, H., Chen, Y., Lei, F., Xu, Z., Wang, X., Zhang, W., 2018. Response of dune mobility and pedogenesis to fluctuations in monsoon precipitation and human activity in the Hulunbuir dune field, northeastern China, since the last deglaciation. Global and Planetary Change, 168, 1-14. https://doi.org/10.1016/j.gloplacha.2018.06.001.




DOI: https://doi.org/10.18172/cig.4477

© Universidad de La Rioja, 2013

ISSN 0211-6820

EISSN 1697-9540