A performance assessment of gridded snow products in the Upper Euphrates

Authors

  • Esteban Alonso-González Centre d’Etudes Spatiales de la Biosphère, CESBIO, Univ. Toulouse, CNES/CNRS/INRAE/IRD/UPS, Toulouse, France https://orcid.org/0000-0002-1883-3823
  • Juan Ignacio López-Moreno Instituto Pirenaico de Ecología, CSIC, Zaragoza, Spain
  • M. Cansaran Ertaş Erzurum Technical University, Faculty of Engineering, Department of Civil Engineering, Erzurum, Turkey
  • Aynur Şensoy Eskisehir Technical University, Faculty of Engineering, Department of Civil Engineering, Eskisehir, Turkey
  • Ali Arda Şorman Eskisehir Technical University, Faculty of Engineering, Department of Civil Engineering, Eskisehir, Turkey

DOI:

https://doi.org/10.18172/cig.5275

Keywords:

Snow water equivalent, snow gridded datasets, reanalysis products, microwave remote sensing, Euphrates Basin

Abstract

Snow observations are important in many mountain areas to quantify the water stored in snowpacks and to predicting runoff during the melting period. In this study we compare the performance of five different regional-scale gridded snow products to reproduce snow water equivalent (SWE) in the Upper Euphrates region (Karasu Basin, 10,275 km2), with observations from automatic weather stations in the catchment through Taylor diagrams. The products compared are the ERA5, ERA5-Land, MERRA-2, snow data from a dynamical downscaling of ERA-5 (period 2000-2018) and SWE generated from microwave satellite data (SWE-E(H13) period 2013-2015 product of the EUMETSAT H SAF project). The H13 product presented deficiencies in terms of not being able to reproduce the spatial and temporal variability of the snowpack. ERA-5 and, in particular, ERA-Land products, at 30 and 9 km grid size, respectively, showed good performance in reproducing snow evolution compared to four available observation sites. MERRA2 at 50 km resolution showed lower skills compared to the above-mentioned products. Resulting snow data from WRF at 10 km resolution did not show any improvement with respect to the global datasets. The impossibility of testing different configurations due to the lack of observations to compare and the computational constraints to test different parametrizations may be the reasons to explain the low performance although they remain speculative. All the gridded datasets showed good performance in reproducing snow duration over the basin, compared to remotely sensed data. Results highlight ERA-Land dataset as a very promising tool for regional snow studies in mountainous regions with limited observations, in a cost-effective way.

Downloads

Download data is not yet available.

References

Aalstad, K., Westermann, S. Bertino, L. (2020). Evaluating satellite retrieved fractional snow-covered area at a high-Arctic site using terrestrial photography. Remote Sensing of Environment, 239, 111618, http://doi.org/10.1016/j.rse.2019.111618

Altinbilek, D.H. (2004). Development and management of the Euphrates-Tigris basin. International Journal of Water Resources Development, 20 (1), 15-33. http://doi.org/10.1080/07900620310001635584

Alonso-González, E, Gutmann, E., Aalstad, K., Fayad, A., Bouchet, M., Gascoin, S. (2021). Snowpack dynamics in the Lebanese mountains from quasi-dynamically downscaled ERA5 reanalysis updated by assimilating remotely sensed fractional snow-covered area. Hydrology and Earth System Sciences, 25 (8), 4455-4471. https://doi.org/10.5194/hess-25-4455-2021

Alonso-González, E., López-Moreno, J.I., Gascoin, S., García-Valdecasas Ojeda, M., Sanmiguel-Vallelado, A., Navarro-Serrano, F., Revuelto, J., Ceballos, A., Esteban-Parra, M.J., Essery, R. (2017). Daily gridded datasets of snow depth and snow water equivalent for the Iberian Peninsula from 1980 to 2014. Earth System Science Data Discussions, 1-24. https://doi.org/10.5194/essd-2017-106

Alonso, R., Pozo, J.M., Buisán, S.T., Álvarez, J.A. (2021). Analysis of the Snow Water Equivalent at the AEMet-Formigal Field Laboratory (Spanish Pyrenees) During the 2019/2020 Winter Season Using a Stepped-Frequency Continuous Wave Radar (SFCW). Remote Sensing, 13 (4). https://doi.org/10.3390/rs13040616

Andreas, D., Kuenzer, C., Gessner, U., Dech, S. (2012). Remote Sensing of Snow – a Review of available methods. International Journal of Remote Sensing, 33, 4094-4134. https://doi.org/10.1080/01431161.2011.640964

Bian, Q., Xu, Z., Zhao, L., Zhang, Y., Zheng, H., Shi, C., Zhang, S., Xie, C., Yang, Z. (2019). Evaluation and Intercomparison of Multiple Snow Water Equivalent Products over the Tibetan Plateau. Journal of Hydrometeorology, 20 (10), 2043-2055. https://doi.org/10.1175/JHM-D-19-0011.1

Blöschl, G. (1999). Scaling issues in snow hydrology. Hydrological Processes, 13 (14-15), 2149-2175. https://doi.org/10.1002/(SICI)1099-1085(199910)13:14/15<2149::AID-HYP847>3.0.CO;2-8

Bormann, K.J., Brown, R.D., Derksen, C., Painter, T.H. (2018). Estimating snow-cover trends from space. Nature Climate Change, 8 (11), 924-928. https://doi.org/10.1038/s41558-018-0318-3

Bojinski, S., Verstraete, M., Peterson, T.C., Richter, C., Simmons, A., Zemp, M. (2014). The concept of essential climate variables in support of climate research, applications, and policy. Bulletin of the American Meteorological Society, 95 (9), 1431-1443, http://doi.org/10.1175/BAMS-D-13-00047.1

Buisán, S.T., Earle, M.E., Collado, J.L., Kochendorfer, J., Alastrué, J., Wolff, M., Smith, C.D., López-Moreno, J.I. (2017). Assessment of snowfall accumulation underestimation by tipping bucket gauges in the Spanish operational network. Atmospheric Measurement Techniques, 10 (3). https://doi.org/10.5194/amt-10-1079-2017

Cullen, H.M., Demenocal, P.B. (2000). North Atlantic influence on Tigris-Euphrates streamflow. International Journal of Climatology: A Journal of the Royal Meteorological Society, 20 (8), 853-863.

Collins, W.D., Rasch P.J., Boville, B.A., Hack, J.J., McCaa, J.R., Williamson, D.L., Kiehl, J.T. Briegleb, B. (2004). Description of the NCAR Community Atmosphere Model (CAM 3.0) (2004) (NCAR Technical Note NCAR/TN-464 + STR, 226 pp.)

Derksen, C., Walker, A., Goodison, B. (2005). Evaluation of passive microwave snow water equivalent retrievals across the boreal forest/tundra transition of western Canada. Remote Sensing of Environment, 96 (3), 315-327. https://doi.org/https://doi.org/10.1016/j.rse.2005.02.014

Dozier, J., Bair, E.H., Davis, R.E. (2016). Estimating the spatial distribution of snow water equivalent in the world?s mountains. WIREs Water, 3 (3), 461-474. https://doi.org/10.1002/wat2.1140

Frei, A., Tedesco, M., Lee, S., Foster, J., Hall, D.K., Kelly, R., Robinson, D.A. (2012). A review of global satellite-derived snow products. Advances in Space Research, 50 (8), 1007-1029. https://doi.org/10.1016/j.asr.2011.12.021

Gascoin, S, Hagolle, O., Huc, M., Jarlan, L., Dejoux, J.-F., Szczypta, C., Marti, R., Sánchez, R. (2015). A snow cover climatology for the Pyrenees from MODIS snow products. Hydrology and Earth System Sciences, 19 (5), 2337-2351. https://doi.org/10.5194/hess-19-2337-2015

Gascoin, S., Barrou Dumont, Z., Deschamps-Berger, C., Marti, F., Salgues, G., López-Moreno, J.I., Revuelto, J., Michon, T., Schattan, P., Hagolle, O. (2020). Estimating Fractional Snow Cover in Open Terrain from Sentinel-2 Using the Normalized Difference Snow Index. Remote Sensing, 12 (18). https://doi.org/10.3390/rs12182904

Gelaro, R., McCarty, W., Suárez, M.J., Todling, R., Molod, A., Takacs, L., Randles, C.A., Darmenov, A., Bosilovich, M.G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A.M., Gu, W., … Zhao, B. (2017). The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal of Climate, 30 (14), 5419-5454. https://doi.org/10.1175/JCLI-D-16-0758.1

Gutmann, E., Barstad, I., Clark, M., Arnold, J., Rasmussen, R. (2016). The Intermediate Complexity Atmospheric Research Model (ICAR). Journal of Hydrometeorology, 17 (3), 957-973. https://doi.org/10.1175/JHM-D-15-0155.1

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J.N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146 (730), 1999-2049. https://doi.org/10.1002/qj.3803

Hersbach, H., Bell, W., Berrisford, P., Horányi, A.J., M.-S., Nicolas, J., Radu, R., Schepers, D., Simmons, A., Soci, C., Dee, D. (2019). Global reanalysis: goodbye ERA-Interim, hello ERA5. ECMWF Newsletter, 159. http://doi.org/10.21957/vf291hehd7

Horak, J., Hofer, M., Maussion, F., Gutmann, E., Gohm, A., Rotach, M.W. (2019). Assessing the added value of the Intermediate Complexity Atmospheric Research (ICAR) model for precipitation in complex topography. Hydrology and Earth System Sciences., 23, 2715-2734. https://doi.org/10.5194/hess-23-2715-2019.

Ikeda, K., Rasmussen, R., Liu, C., Gochis, D., Yates, D., Tewari, M., Barlage, M., Dudhia, J., Miller, K., Arsenault, K., Grubišić, V. (2010). Simulation of seasonal snowfall over Colorado. Atmospheric Research, 97, 462-477. https://doi.org/10.1016/j.atmosres.2010.04.010

Janjic, Z.I., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Review, 122 (5), 927-945. https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2

Janjic, Z.I. (2002) Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso Model (NCEP Office Note, No. 437, 61 pp.)

Kelley, C. P., Mohtadi, S., Cane, M. A., Seager, R., Kushnir, Y. (2015). Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proceedings of the National Academy of Sciences, 112 (11), 3241 LP-3246. https://doi.org/10.1073/pnas.1421533112

Kochendorfer, J., Earle, M.E., Hodyss, D., Reverdin, A., Roulet, Y., Nitu, R., Rasmussen, R., Landolt, S., Buisan, S., Laine, T. (2020). Undercatch adjustments for tipping bucket gauge measurements of solid precipitation. Journal of Hydrometeorology, 21 (6), 1195-1205. https://doi.org/10.1175/JHM-D-19-0256.1

Largeron, C., Dumont, M., Morin, S., Boone, A., Lafaysse, M., Metref, S., Cosme, E., Jonas, T., Winstral, A., Margulis, S.A. (2020). Toward Snow Cover Estimation in Mountainous Areas Using Modern Data Assimilation Methods: A Review. Frontiers in Earth Science, 8, 325. https://doi.org/10.3389/feart.2020.00325

Liston, G.E., Elder, K. (2006). A Distributed Snow-Evolution Modeling System (SnowModel). Journal of Hydrometeorology, 7 (6), 1259-1276. https://doi.org/10.1175/JHM548.1

López-Moreno, J.I., Fassnacht, S.R., Heath, J.T., Musselman, K.N., Revuelto, J., Latron, J., Morán-Tejeda, E., Jonas, T. (2013). Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent. Advances in Water Resources, 55. https://doi.org/10.1016/j.advwatres.2012.08.010

López-Moreno, J.I., Nogués-Bravo, D. (2006). Interpolating local snow depth data: An evaluation of methods. Hydrological Processes, 20 (10). https://doi.org/10.1002/hyp.6199

López-Moreno, J.I., Revuelto, J., Fassnacht, S.R., Azorín-Molina, C., Vicente-Serrano, S.M., Morán-Tejeda, E., Sexstone, G.A. (2015). Snowpack variability across various spatio-temporal resolutions. Hydrological Processes, 29 (6). https://doi.org/10.1002/hyp.10245

Lundquist, J., Hughes, M., Gutmann, E., Kapnick, S. (2019). Our Skill in Modeling Mountain Rain and Snow is Bypassing the Skill of Our Observational Networks. Bulletin of the American Meteorological Society, 100 (12), 2473-2490. https://doi.org/10.1175/BAMS-D-19-0001.1

Malnes, E., Guneriussen, T. (2002). Mapping of snow covered area with Radarsat in Norway. In International Geoscience and Remote Sensing Symposium (IGARSS) (Vol. 1). https://doi.org/10.1109/IGARSS.2002.1025145

Margulis, S.A., Cortés, G., Girotto, M., Durand, M. (2016). A Landsat-Era Sierra Nevada Snow Reanalysis (1985-2015). Journal of Hydrometeorology, 17 (4), 1203-1221. https://doi.org/10.1175/JHM-D-15-0177.1

Mortimer, C., Mudryk, L., Derksen, C., Luojus, K., Brown, R., Kelly, R., Tedesco, M. (2020). Evaluation of long-term Northern Hemisphere snow water equivalent products, The Cryosphere, 14, 1579-1594. https://doi.org/10.5194/tc-14-1579-2020

Muñoz-Sabater, J., Dutra, E., Agusti-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D.G., Piles, M., Rodriguez-Fernández, N.J., Zsoter, E., Buontempo, C., Thépaut, J.-N. (2021). ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data Discussions, 1-50. https://doi.org/10.5194/essd-2021-82

Musselman, K.N., Addor, N., Vano, J.A., Molotch, N.P. (2021). Winter melt trends portend widespread declines in snow water resources. Nature Climate Change, 11 (5), 418-424, http://doi.org/10.1038/s41558-021-01014-9

Nogueira, M. (2020). Inter-comparison of ERA-5, ERA-interim and GPCP rainfall over the last 40 years: Process-based analysis of systematic and random differences. Journal of Hydrology, 583, 124632. https://doi.org/10.1016/j.jhydrol.2020.124632

Niu. G.-Y., Yang, Z.-L., Mitchell, K.E., Chen, F., Ek, M.B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., Xia, Y. (2011), The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. Journal of. Geophysical Research, 116, D12109, http://doi.org/10.1029/2010JD015139

Piazzi, G., Tanis, C.M., Kuter, S., Simsek, B., Puca, S., Toniazzo, A., Takala, M., Akyürek, Z., Gabellani, S., Arslan, A.N. (2019). Cross-Country Assessment of H-SAF Snow Products by Sentinel-2 Imagery Validated against In-Situ Observations and Webcam Photography. Geosciences, 9 (3). https://doi.org/10.3390/geosciences9030129

Powers, J.G., Werner, K.K., Gill, D.O., Lin, Y.-L., Schumacher, R.S. (2021). Cloud Computing Efforts for the Weather Research and Forecasting Model. Bulletin of the American Meteorological Society, 102 (6), E1261-E1274. https://doi.org/10.1175/BAMS-D-20-0219.1

Pulliainen, J.T., Grandell, J., Hallikainen, M.T. (1999). HUT snow emission model and its applicability to snow water equivalent retrieval. IEEE Transactions on Geoscience and Remote Sensing, 37 (3), 1378-1390. http://doi.org/10.1109/36.763302

Rasmussen, R., Ikeda, K., Liu, C., Gochis, D., Clark, M., Dai, A., Gutmann, E., Dudhia, J., Barlage, M., Yates, D., Zhang, G. (2014). Climate Change Impacts on the Water Balance of the Colorado Headwaters: High-Resolution Regional Climate Model Simulations. Journal of Hydrometeorology, 15, 1091-1116. https://doi.org/10.1175/JHM-D-13-0118.1

Revuelto, J., Lecourt, G., Lafaysse, M., Zin, I., Charrois, L., Vionnet, V., Dumont, M., Rabatel, A., Six, D., Condom, T., Morin, S., Viani, A., Sirguey, P. (2018). Multi-Criteria Evaluation of Snowpack Simulations in Complex Alpine Terrain Using Satellite and In Situ Observations. Remote Sensing, 10, 1171. https://doi.org/10.3390/rs10081171

Saavedra, F. A., Kampf, S.K., Fassnacht, S.R., Sibold, J.S. (2017). A snow climatology of the Andes Mountains from MODIS snow cover data. International Journal of Climatology, 37 (3), 1526-1539. https://doi.org/10.1002/joc.4795

Sexstone, G.A., Fassnacht, S.R., López-Moreno, J.I., Hiemstra, C.A. (2021). Subgrid snow depth coefficient of variation spanning alpine to sub-alpine mountainous terrain. Cuadernos de Investigación Geográfica, 48 (1). 79-96. https://doi.org/10.18172/cig.4951

Skamarock, W.C., Klemp, J.B., Dudhia, J.B., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.-Y., Wang, W., Powers, J.G. (2008). A Description of the Advanced Research WRF Version 3 (No. NCAR/TN-475+STR). University Corporation for Atmospheric Research. http://doi.org/10.5065/D68S4MVH

Şorman, A.Ü., Beşer, Ö. (2013). Determination of snow water equivalent over the eastern part of Turkey using passive microwave data Hydrological Processes, 27 (14), 1945-1958. https://doi.org/10.1002/hyp.9267

Surer, S., Akyurek, Z. (2012). Evaluating the utility of the EUMETSAT HSAF snow recognition product over mountainous areas of eastern Turkey. Hydrological Sciences Journal, 57 (8), 1684-1694. https://doi.org/10.1080/02626667.2012.729132

Sürer, S., Parajka, J., Akyürek, Z. (2013). Validation of the operational MSG-SEVIRI snow cover product over Austria. Hydrology and Earth System Sciences Discussions, 10, 12153-12185. https://doi.org/10.5194/hessd-10-12153-2013

Taylor, K.E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106 (D7), 7183-7192. https://doi.org/10.1029/2000JD900719

Tekeli, A.E., Akyürek, Z., Arda Şorman, A., Şensoy, A., Ünal Şorman, A. (2005). Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey. Remote Sensing of Environment, 97 (2), 216-230. https://doi.org/10.1016/j.rse.2005.03.013

Thompson, G., Field, P.R., Hall, W.R., Rasmussen, R.M. (2008). Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: implementation of a new snow parameterization. Monthly Weather Review, 136 (12), 5095-5115. https://doi.org/10.1175/2008MWR2387.1

Wrzesien, M.L., Durand, M.T., Pavelsky, T.M., Howat, I.M., Margulis, S.A., Huning, L.S. (2017). Comparison of methods to estimate snow water equivalent at the mountain range scale: A case study of the California Sierra Nevada. Journal of Hydrometeorology, 18 (4), 1101-1119. https://doi.org/10.1175/JHM-D-16-0246.1

Yilmaz, A., Imteaz, M. (2014). Climate change and water resources in Turkey: A review. International Journal of Water, 8, 299. https://doi.org/10.1504/IJW.2014.064222

Zandler, H., Haag, I., Samimi, C. (2019) Evaluation needs and temporal performance difference of gridded precipitation products in peripheral mountain regions. Scientific Reports, 9, 15118. https://doi.org/10.1038/s41598-019-51666-z

Published

04-11-2022

How to Cite

1.
Alonso-González E, López-Moreno JI, Ertaş MC, Şensoy A, Şorman AA. A performance assessment of gridded snow products in the Upper Euphrates. CIG [Internet]. 2022 Nov. 4 [cited 2023 Jan. 28];. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/5275

Issue

Section

Articles