Numerical simulations of recent and future evolution of Monte Perdido glacier

Authors

DOI:

https://doi.org/10.18172/cig.5816

Keywords:

Mountain glacier, OGGM, in-situ surface observations, climate change

Abstract

Glaciers are globally retreating due to climate change, and the Pyrenees Mountain range is no exception. This study uses the Open Global Glacier Model (OGGM) to explore the dynamics of the Monte Perdido glacier, one of the largest remaining glaciers in the Pyrenees. We explored three calibration approaches to assess their performances when reproducing observed volume decreases. The first approach involved mass balance calibration using terrestrial laser scanning data from 2011 to 2022 and climate data from a nearby weather station. The second approach used terrestrial laser scanning calibration with default climate data provided by OGGM (GSWP3-W5E5). The third approach used default geodetic mass balance calibration and default climate data. By comparing these calibration strategies and analysing historical data (terrestrial laser scanning and ground penetrating radar), we obtain insights of the applicability of OGGM to this small, mild conditions, Pyrenean glacier. The first calibration approach is identified as the most effective, emphasising the importance of selecting appropriate climate data and calibration methods. Additionally, we conducted future volume projections using an ensemble of General Circulation Models (GCMs) under the RCP2.6 and RCP8.5 scenarios. The results indicate a potential decrease in total ice volume ranging from 91.60% to 95.16% by 2100, depending on the scenario. Overall, this study contributes to the understanding of the Monte Perdido glacier’s behaviour and its response to climate change through the calibration of the OGGM, while also providing the first estimate of its future melting under different emission scenarios.

Downloads

Download data is not yet available.

References

Alonso-González, E., Aalstad, K., Baba, M.W., Revuelto, J., López-Moreno, J.I., Fiddes, J., Essery, R., Gascoin, S., 2022. The Multiple Snow Data Assimilation System (MuSA v1.0). Geoscientific Model Development 15, 9127–9155. https://doi.org/10.5194/gmd-15-9127-2022

Arora, V.K., Scinocca, J.F., Boer, G.J., Christian, J.R., Denman, K.L., Flato, G.M., Kharin, V. V, Lee, W.G., Merryfield, W.J., 2011. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophysical Research Letters 38 (5). https://doi.org/10.1029/2010GL046270

Belart, J. M. C., 2018. Mass balance of Icelandic glaciers in variable climate. (Ph.D. thesis). University of Iceland; University of Toulouse III, Paul Sabatier.

Beniston, M., 2003. Climatic Change in Mountain Regions: A Review of Possible Impacts. Climatic Change 59, 5–31. https://doi.org/10.1023/A:1024458411589

Bentsen, M., Bethke, I., Debernard, J.B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I.A., Hoose, C., Kristjánsson, J.E., 2013. The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate. Geoscientific Model Development 6 (3), 687–720. https://doi.org/10.5194/gmd-6-687-2013

Bolibar, J., Sapienza, F., Maussion, F., Lguensat, R., Wouters, B., Pérez, F., 2023. Universal Differential Equations for glacier ice flow modelling. Geoscientific Model Development Discussions 16 (22), 6671-6687. https://doi.org/10.5194/gmd-16-6671-2023

Braithwaite, R.J., Zhang, Y., 2000. Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model. Journal of Glaciology 46, 7–14. https://doi.org/10.3189/172756500781833511

Campos, N., Alcalá-Reygosa, J., Watson, S.C., Kougkoulos, I., Quesada-Román, A., Grima, N., 2021. Modeling the retreat of the Aneto Glacier (Spanish Pyrenees) since the Little Ice Age, and its accelerated shrinkage over recent decades. The Holocene 31, 1315–1326. https://doi.org/10.1177/09596836211011678

Centro Nacional de Información Geográfica (CNIG), 2023. Organismo Autónomo Centro Nacional de Información Geográfica (CNIG). http://www.cnig.es

Chueca Cía, J., Julián Andrés, A., Saz Sánchez, M.A., Creus Novau, J., López Moreno, J.I., 2005. Responses to climatic changes since the Little Ice Age on Maladeta Glacier (Central Pyrenees). Geomorphology 68, 167–182. https://doi.org/10.1016/j.geomorph.2004.11.012

Cucchi, M., Weedon, G.P., Amici, A., Bellouin, N., Lange, S., Müller Schmied, H., Hersbach, H., Buontempo, C., 2020. WFDE5: bias-adjusted ERA5 reanalysis data for impact studies. Earth System Science Data 12, 2097–2120. https://doi.org/10.5194/essd-12-2097-2020

Dirmeyer, P.A., Gao, X., Zhao, M., Guo, Z., Oki, T., Hanasaki, N., 2006. GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bulletin of the American Meteorological Society 87, 1381–1398. American Meteorological Society. https://doi.org/10.1175/BAMS-87-10-1381

Donner, L.J., Wyman, B.L., Hemler, R.S., Horowitz, L.W., Ming, Y., Zhao, M., Golaz, J.-C., Ginoux, P., Lin, S.-J., Schwarzkopf, M.D., Austin, J., Alaka, G., Cooke, W.F., Delworth, T.L., Freidenreich, S.M., Gordon, C.T., Griffies, S.M., Held, I.M., Hurlin, W.J., Klein, S.A., Knutson, T.R., Langenhorst, A.R., Lee, H.-C., Lin, Y., Magi, B.I., Malyshev, S.L., Milly, P.C.D., Naik, V., Nath, M.J., Pincus, R., Ploshay, J.J., Ramaswamy, V., Seman, C.J., Shevliakova, E., Sirutis, J.J., Stern, W.F., Stouffer, R.J., Wilson, R.J., Winton, M., Wittenberg, A.T., Zeng, F., 2011. The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3. Journal of Climate 24, 3484–3519. https://doi.org/10.1175/2011JCLI3955.1

Dunne, J.P., John, J.G., Adcroft, A.J., Griffies, S.M., Hallberg, R.W., Shevliakova, E., Stouffer, R.J., Cooke, W., Dunne, K.A., Harrison, M.J., Krasting, J.P., Malyshev, S.L., Milly, P.C.D., Phillipps, P.J., Sentman, L.T., Samuels, B.L., Spelman, M.J., Winton, M., Wittenberg, A.T., Zadeh, N., 2012. GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics. Journal of Climate 25, 6646–6665. https://doi.org/10.1175/JCLI-D-11-00560.1

Eis, J., 2020. Reconstructing glacier evolution using a flowline model-Development of an initialization method. University of Bremen.

Farinotti, D., Huss, M., Bauder, A., Funk, M., Truffer, M., 2009. A method to estimate the ice volume and ice-thickness distribution of alpine glaciers. Journal of Glaciology 55, 422–430. https://doi.org/10.3189/002214309788816759

García-López, E., Moreno, A., Bartolomé, M., Leunda, M., Sancho, C., Cid, C., 2021. Glacial Ice Age Shapes Microbiome Composition in a Receding Southern European Glacier. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.714537

Gent, P.R., Danabasoglu, G., Donner, L.J., Holland, M.M., Hunke, E.C., Jayne, S.R., Lawrence, D.M., Neale, R.B., Rasch, P.J., Vertenstein, M., Worley, P.H., Yang, Z.-L., Zhang, M., 2011. The Community Climate System Model Version 4. Journal of Climate 24, 4973–4991. https://doi.org/10.1175/2011JCLI4083.1

Grunewald, K., Scheithauer, J., 2010. Europe’s southernmost glaciers: response and adaptation to climate change. Journal of Glaciology 56, 129–142. https://doi.org/10.3189/002214310791190947

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J.-N., 2023. ERA5 monthly averaged data on single levels from 1940 to present. https://doi.org/10.24381/cds.f17050d7

Hock, R., 2003. Temperature index melt modelling in mountain areas. Journal of Hydrology 282, 104–115. https://doi.org/10.1016/S0022-1694(03)00257-9

Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F., Dufresne, J.-L., Fairhead, L., Filiberti, M.-A., Friedlingstein, P., Grandpeix, J.-Y., Krinner, G., LeVan, P., Li, Z.-X., Lott, F., 2006. The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dynamics 27, 787–813. https://doi.org/10.1007/s00382-006-0158-0

Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L., Farinotti, D., Huss, M., Dussaillant, I., Brun, F., Kääb, A., 2021. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731. https://doi.org/10.1038/s41586-021-03436-z

Huston, A., Siler, N., Roe, G.H., Pettit, E., Steiger, N.J., 2021. Understanding drivers of glacier-length variability over the last millennium. The Cryosphere 15, 1645–1662. https://doi.org/10.5194/tc-15-1645-2021

Huybers, K., Roe, G.H., 2009. Spatial Patterns of Glaciers in Response to Spatial Patterns in Regional Climate. Journal of Climate 22, 4606–4620. https://doi.org/10.1175/2009JCLI2857.1

IPCC, 2021. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change.

Julián, A., Chueca, J., 2007. Pérdidas de extensión y volumen en los glaciares del macizo de Monte Perdido (Pirineo central español): 1981–1999. Boletín Glaciológico Aragonés 8, 31–60.

Khadka, M., Kayastha, R.B., Kayastha, R., 2020. Future projection of cryospheric and hydrologic regimes in Koshi River basin, Central Himalaya, using coupled glacier dynamics and glacio-hydrological models. Journal of Glaciology 66, 831–845. https://doi.org/10.1017/jog.2020.51

Kienholz, C., Rich, J.L., Arendt, A.A., Hock, R, 2014. A new method for deriving glacier centerlines applied to glaciers in Alaska and northwest Canada. The Cryosphere 8, 503–519. https://doi.org/10.5194/tc-8-503-2014

Kim, H., Watanabe, S., Chang, E.C., Yoshimura, K., Hirabayashi, J., Famiglietti, J., Oki, T., 2017. Global Soil Wetness Project Phase 3 Atmospheric Boundary Conditions (Experiment 1) [Data set], Data Integration and Analysis System (DIAS).

Lange, S., 2019. WFDE5 over land merged with ERA5 over the ocean (W5E5). V. 1.0. GFZ Data Services.

Lange, S., Büchner, M., 2020. ISIMIP2a atmospheric climate input data. ISIMIP Repository. https://data.isimip.org/10.48364/ISIMIP.886955

López-Moreno, J.I., Revuelto, J., Rico, I., Chueca-Cía, J., Julián, A., Serreta, A., Serrano, E., Vicente-Serrano, S.M., Azorin-Molina, C., Alonso-González, E., García-Ruiz, J.M., 2016. Thinning of the Monte Perdido Glacier in the Spanish Pyrenees since 1981. The Cryosphere 10, 681–694. https://doi.org/10.5194/tc-10-681-2016

López-Moreno, J.I., Alonso-González, E., Monserrat, O., Río, L.M. Del, Otero, J., Lapazaran, J., Luzi, G., Dematteis, N., Serreta, A., Rico, I., Serrano-Cañadas, E., Bartolomé, M., Moreno, A., Buisan, S., Revuelto, J., 2019. Ground-based remote-sensing techniques for diagnosis of the current state and recent evolution of the Monte Perdido Glacier, Spanish Pyrenees. Journal of Glaciology 65, 85–100. https://doi.org/10.1017/jog.2018.96

López-Moreno, J.I., García-Ruiz, J.M., Vicente-Serrano, S.M., Alonso-González, E., Revuelto-Benedí, J., Rico, I., Izagirre, E., Beguería-Portugués, S., 2020. Critical discussion of: “A farewell to glaciers: Ecosystem services loss in the Spanish Pyrenees”. Journal of Environmental Management 275, 111247. https://doi.org/10.1016/j.jenvman.2020.111247

Ma, L., Tian, L., Pu, J., Wang, P., 2010. Recent area and ice volume change of Kangwure Glacier in the middle of Himalayas. Chinese Science Bulletin 55, 2088–2096. https://doi.org/10.1007/s11434-010-3211-7

Maussion, F., Butenko, A., Champollion, N., Dusch, M., Eis, J., Fourteau, K., Gregor, P., Jarosch, A.H., Landmann, J., Oesterle, F., Recinos, B., Rothenpieler, T., Vlug, A., Wild, C.T., Marzeion, B., 2019. The Open Global Glacier Model (OGGM) v1.1. Geoscientific Model Development 2019, 909–931. https://doi.org/10.5194/gmd-12-909-2019

Maussion, F., Rothenpieler, T., Dusch, M., Schmitt, P., Vlug, A., Schuster, L., Champollion, N., Li, F., Marzeion, B., Oberrauch, M., Eis, J., Landmann, J., Jarosch, A., Fischer, A., luzpaz, Hanus, S., Rounce, D., Castellani, M., Bartholomew, S.L., Minallah, S., bowenbelongstonature, Merrill, C., Otto, D., Loibl, D., Ultee, L., Thompson, S., anton-ub, Gregor, P., zhaohongyu, 2023. OGGM/oggm: v1.6.0. Zenodo. https://doi.org/10.5281/zenodo.7718476

Miller, R.L., Schmidt, G.A., Nazarenko, L.S., Tausnev, N., Bauer, S.E., DelGenio, A.D., Kelley, M., Lo, K.K., Ruedy, R., Shindell, D.T., Aleinov, I., Bauer, M., Bleck, R., Canuto, V., Chen, Y., Cheng, Y., Clune, T.L., Faluvegi, G., Hansen, J.E., Healy, R.J., Kiang, N.Y., Koch, D., Lacis, A.A., LeGrande, A.N., Lerner, J., Menon, S., Oinas, V., García-Pando, C.P., Perlwitz, J.P., Puma, M.J., Rind, D., Romanou, A., Russell, G.L., Sato, M., Sun, S., Tsigaridis, K., Unger, N., Voulgarakis, A., Yao, M.-S., Zhang, J., 2014. CMIP5 historical simulations (1850-2012) with GISS ModelE2. Journal of Advances in Modeling Earth Systems 6, 441–478. https://doi.org/10.1002/2013MS000266

Moreno, A., Bartolomé, M., López-Moreno, J.I., Pey, J., Corella, J.P., García-Orellana, J., Sancho, C., Leunda, M., Gil-Romera, G., González-Sampériz, P., Pérez-Mejías, C., Navarro, F., Otero-García, J., Lapazaran, J., Alonso-González, E., Cid, C., López-Martínez, J., Oliva-Urcia, B., Faria, S.H., Sierra, M.J., Millán, R., Querol, X., Alastuey, A., García-Ruíz, J.M., 2021. The case of a southern European glacier which survived Roman and medieval warm periods but is disappearing under recent warming. The Cryosphere 15, 1157–1172. https://doi.org/10.5194/tc-15-1157-2021

Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., Zhang, H., 2013. Anthropogenic and natural radiative forcing. P. in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 659–740 pp.

Paterson, W.S.B., 2000. Physics of glaciers. P. in.: Butterworth-Heinemann.

Revuelto, J., López-Moreno, J.I., Azorin-Molina, C., Zabalza, J., Arguedas, G., Vicente-Serrano, S.M., 2014. Mapping the annual evolution of snow depth in a small catchment in the Pyrenees using the long-range terrestrial laser scanning. Journal of Maps 10, 379–393. https://doi.org/10.1080/17445647.2013.869268

Revuelto, J., Jiménez, J.G., Rojas-Heredia, F., Vidaller, I., Deschamps-Berger, C., Izagirre, E., Voordendag, A., López-Moreno, J.I., 2022. Geometric features of mountain glaciers from 3D point clouds to delimit their extent: insight from gradient boosting trees algorithms. Pp. C55A–01 in: AGU Fall Meeting Abstracts.

Rico, I., Izagirre, E., Serrano, E., López-Moreno, J.I., 2017. Superficie glaciar actual en los Pirineos: Una actualización para 2016. Pirineos 172, 29. https://doi.org/10.3989/Pirineos.2017.172004

Rotstayn, L.D., Collier, M.A., Dix, M.R., Feng, Y., Gordon, H.B., O’Farrell, S.P., Smith, I.N., Syktus, J., 2009. Improved simulation of Australian climate and ENSO-related rainfall variability in a global climate model with an interactive aerosol treatment. International Journal of Climatology 30 (7), 1067-1088. https://doi.org/10.1002/joc.1952

Schuster, L., Rounce, D.R., Maussion, F., 2023. Glacier projections sensitivity to temperature-index model choices and calibration strategies. Annals of Glaciology. https://doi.org/10.1017/aog.2023.57

Serrano Cañadas, E., 2023. Glaciares, cultura y patrimonio La huella cultural de los glaciares pirenaicos. Universidad de Valladolid.

Taylor, K.E., Stouffer, R.J., Meehl, G.A., 2012. An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society 93, 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

Van der Laan, L.N., Cholibois, K., El Menuawy, A., Förster, K., 2022. A Scenario-Neutral Approach to Climate Change in Glacier Mass Balance Modelling. Annals of Glaciology. https://doi.org/10.31223/X51H18

Van der Veen, C.J., 2013. Fundamentals of Glacier Dynamics. CRC Press.

Vidaller, I., Revuelto, J., Izagirre, E., Rojas‐Heredia, F., Alonso‐González, E., Gascoin, S., René, P., Berthier, E., Rico, I., Moreno, A., Serrano, E., Serreta, A., López‐Moreno, J.I., 2021. Toward an Ice‐Free Mountain Range: Demise of Pyrenean Glaciers During 2011–2020. Geophysical Research Letters, 48 (18). https://doi.org/10.1029/2021GL094339

Vlug, A., 2021. The influence of climate variability on the mass balance of Canadian Arctic land-terminating glaciers, in simulations of the last millennium. Universität Bremen.

Voldoire, A., Sanchez-Gomez, E., y Mélia, D.S., Decharme, B., Cassou, C., Sénési, S., Valcke, S., Beau, I., Alias, A., Chevallier, M., Déqué, M., Deshayes, J., Douville, H., Fernandez, E., Madec, G., Maisonnave, E., Moine, M.-P., Planton, S., Saint-Martin, D., Szopa, S., Tyteca, S., Alkama, R., Belamari, S., Braun, A., Coquart, L., Chauvin, F., 2013. The CNRM-CM5.1 global climate model: description and basic evaluation. Climate Dynamics, 40, 2091–2121. https://doi.org/10.1007/s00382-011-1259-y

Zanchettin, D., Rubino, A., Matei, D., Bothe, O., Jungclaus, J.H., 2013. Multidecadal-to-centennial SST variability in the MPI-ESM simulation ensemble for the last millennium. Climate Dynamics 40, 1301–1318. https://doi.org/10.1007/s00382-012-1361-9

Zekollari, H., Huss, M., Farinotti, D., 2019. Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble. The Cryosphere 13, 1125–1146. https://doi.org/10.5194/tc-13-1125-2019

Published

17-01-2024

How to Cite

1.
Mateos-García A, Santolaria-Otín M, Sola Y, Alonso-González E, Otero J, del Rio LM, López-Moreno JI, Revuelto J. Numerical simulations of recent and future evolution of Monte Perdido glacier . CIG [Internet]. 2024 Jan. 17 [cited 2024 Apr. 30];. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/5816

Issue

Section

Articles