Influence of climate variability on fire generation

Myths and facts in southern Pampas (Argentina)

Authors

  • Federico Ferrelli Instituto Argentino de Oceanografía. Consejo Nacional de Investigaciones Científicas y Técnicas
  • Ana Casado CEDETS, Universidad Provincial del Sudoeste (UPSO)

DOI:

https://doi.org/10.18172/cig.5774

Keywords:

climate variability, El Niño and La Niña events, fires, Southern Pampas

Abstract

This study evaluates the occurrence of dry and wet events and their relationship with fires in southern Pampas, Argentina. The intensity and magnitude of dry and wet events were determined based on the regional series of the Standardized Precipitation and Evapotranspiration Index (SPEI) for the 2000-2021 period. The data obtained were related to the El Niño Oceanic Index (ONI) to analyze the incidence of El Niño and La Niña events in generating them. Fires in the region were detected using remote sensing techniques, considering the number of events, their intensity, extent, and duration. The southern Pampas experiences marked rainfall variability, with 15 dry events, 11 wet years, and 2 standard years recorded for the period analyzed. Extreme dry years were, on average, more intense (SPEI = -2.14) and occurred mainly during the negative ONI phase. In contrast, extreme wet years exhibited lower intensity (SPEI = 1.98), and only the most intense ones were related to neutral ONI phases. We analyzed a representative extremely dry (ED) and an extremely wet events (EW) to interpret the relationship between climate variability and the spatiotemporal variability of fires in the region. It was observed that during the EW event (2014-2015, SPEI = 1.52, and El Niño event until 2015) the number of fires was higher compared to an ED event (2008-2009, SPEI = -2.22, and La Niña event during 2008), with 460 and 205 fires, respectively. The intensity was higher in the EW (302.6 and 31.5 MW), while the area presented considerable differences (1722 and 815.5 km2, respectively). Finally, the duration of the fires was shorter in ED than in EW (6 and 8 months, respectively). These results were related to vegetation health (NDVI = 0.29 and 0.41 and EVI = 0.15 and 0.21 in ED and EW, respectively) and changes in land covers. This study provides a solid database for future research efforts and sustainable land management plans.

Downloads

Download data is not yet available.

Author Biography

Federico Ferrelli, Instituto Argentino de Oceanografía. Consejo Nacional de Investigaciones Científicas y Técnicas

Doctor en Geografía, Especialista en Teledetección y Sistemas de Información Geográfica aplicados al estudio del Medio Ambiente.

Licenciado y profesor en geografía.

Desarrollando actividades de investigación en el Intituto Argentino de Oceanografía.

References

Abatan, A.A., Abiodun, B.J., Lawal, K.A., Gutowski Jr, W.J., 2016. Trends in extreme temperature over Nigeria from percentile‐based threshold indices. International Journal of Climatology 36, 2527-2540. https://doi.org/10.1002/joc.4510

Aliaga, V.S., Ferrelli, F., Piccolo, M.C., 2017. Regionalization of climate over the Argentine Pampas. International Journal of Climatology 37, 1237-1247. https://doi.org/10.1002/joc.5079

Aliaga, V.S., Ferrelli, F., Alberdi Algarañaz, E.D., Bohn, V., Piccolo, M. C., 2016. Distribución y variabilidad de la precipitación en la región pampeana argentina. Cuadernos de Investigación Geográfica 42, 261-280. https://doi.org/10.18172/cig.2867

Andrade, B.O., Koch, C., Boldrini, I.I., Vélez-Martin, E., Hasenack, H., Hermann, J.M., Kollmann, J., Pillar, V. D., Overbeck, G.E., 2015. Grassland degradation and restoration: a conceptual framework of stages and thresholds illustrated by southern Brazilian grasslands. Natureza Conservação 13, 95-104. https://doi.org/10.1016/j.ncon.2015.08.002

Bert, F., de Estrada, M., Naumann, G., Negri, R., Podestá, G., de los Milagros Skansi, M., Spennemann, P., Quesada, M., 2021. The 2017-18 drought in the Argentine Pampas–Impacts on Agriculture. United Nations Office for Disaster Risk Reduction 2021. GAR Special Report on Drought.

Bowman, D., Williamson, G., Yebra, M., Lizundia-Loiola, J., Pettinari, M. L., Shah, S., Bradstock, R., Chuvieco, E., 2020. Wildfires: Australia needs national monitoring agency. Nature 584, 188-191. https://doi.org/10.1038/d41586-020-02306-4

Bran, D., Cecchi, G., Gaitan, J., Ayesa, J., Lopez, C., 2007. Efecto de la severidad de quemado sobre la regeneración de la vegetación en el Monte Austral. Revista Ecología Austral 17, 123-132.

Brendel, A.S., Ferrelli, F., Piccolo, M.C., Perillo, G.M.E., 2019. Assessment of the effectiveness of supervised and unsupervised methods: maximizing land-cover classification accuracy with spectral indices data. Journal of Applied Remote Sensing 13, 014503-014503. https://doi.org/10.1117/1.JRS.13.014503

Cabrera, M., 1976. Territorios fitogeográficos de la República Argentina. In: Enciclopedia Argentina de Agricultura y Jardinería. Editorial Acme SACI, 90 pp., Buenos Aires,

Campo de Ferreras, A.M., Capelli de Steffens, A.M., Diez, P.G., 2004. El clima del suroeste bonaerense. EdiUNS, Bahía Blanca, 99 pp.

Chen, F., Chen, J., Liu, J., 2022. Comprehensive evaluation and optimization model of regional fire protection planning of major hazard sources based on multiobjective fuzzy theory. Computational Intelligence and Neuroscience 2022. https://doi.org/10.1155/2022/3517836

Delegido, J., Pezzola, A., Casella, A., Winschel, C., Urrego, E.P., Jimenez, J.C., Sobrino, J.A., Soria, G., Moreno, J., 2018. Estimación del grado de severidad de incendios en el sur de la provincia de Buenos Aires, Argentina, usando Sentinel-2 y su comparación con Landsat-8. Revista de Teledetección 51, 47-60. https://doi.org/10.4995/raet.2018.8934

Ferrelli, F., 2017. Variabilidad pluviométrica y sus efectos sobre las coberturas del suelo al sur de la provincia de Buenos Aires, Argentina. Revista Geográfica Venezolana 58, 26-37.

Ferrelli, F., Brendel, A.S., Aliaga, V.S., Piccolo, M.C., Perillo, G.M.E., 2019. Climate regionalization and trends based on daily temperature and precipitation extremes in the south of the Pampas Argentina. Cuadernos de Investigación Geográfica 45, 393–416. http://doi.org/10.18172/cig.3707

Ferrelli, F., Brendel, A.S., Piccolo, M.C., Perillo, G.M.E., 2020. Tendencia actual y futura de la precipitación en el sur de la Región Pampeana Argentina. Investigaciones Geográficas 102. https://doi.org/10.14350/rig.59919

Ferrelli, F., Brendel, A.S., Perillo, G.M.E., Piccolo, M.C., 2021., Warming signals emerging from the analysis of daily changes in extreme temperature events over Pampas Argentina. Environmental Earth Sciences 80, 422. https://doi.org/10.1007/s12665-021-09721-4

Ferrelli, F. Brendel, A.S., Perillo, G.M.E., Piccolo, M.C., 2022. Determinación de coberturas del suelo en una región semiárida de Argentina mediante imágenes satelitales ópticas. Revista Geográfica Venezolana 63, 64-79.

Foucher, A., Tassano, M., Chaboche, P.A., Chalar, G., Cabrera, M., Gonzalez, J., Cabral, P., Simon, A.C., Agelou, M., Ramon, R., Tiecher, T., Evrard, O., 2023. Inexorable land degradation due to agriculture expansion in South American Pampa. Nature Sustainability 6, 662-670. https://doi.org/10.1038/s41893-023-01074-z

Franzke, C.L.E., Barbosa, S., Blender, R., Fredriksen, H.B., Laepple, T., Lambert, F., 2020. The structure of climate variability across scales. Reviews of Geophysics, 58, e2019RG000657. https://doi.org/10.1029/2019RG000657

Gabella, J.I., Iuorno, M.V., Campo, A.M., 2013. Análisis integral de un sistema territorial degradado: el caso del partido de Patagones. Proyección 8, 68-91

Garay, D.D., 2020. Incendios rurales y forestales: la importancia de la teledetección y los sistemas de información geográfica. Revista TECNOÁRIDO 2, 46-48.

Grimm, A.M. 2011. Interannual climate variability in South America: impacts on seasonal precipitation, extreme events, and possible effects of climate change. Stochastic Environmental Research and Risk Assessment 25, 537-554. https://doi.org/10.1007/s00477-010-0420-1

INDEC, 2010. Censo de Población, Hogares y Viviendas. Available at https://www.indec.gob.ar/ (last access: 14/04/2022)

Iurman, D., 2010. Sistemas agropecuarios de Villarino y Patagones: análisis y propuestas. Ediciones INTA, 32 pp., Buenos Aires,

Kröpfl, A.I., Deregibus, V.A., Cecchi, G.A., 2007. Disturbios en una estepa arbustiva del Monte: cambios en la vegetación. Ecología austral 17, 257-268.

Lestienne, M., Vannière, B., Curt, T., Jouffroy-Bapicot, I., Hély, C., 2022. Climate-driven Mediterranean fire hazard assessments for 2020–2100 on the light of past millennial variability. Climatic Change 170, 14. https://doi.org/10.1007/s10584-021-03258-y

Masson-Delmotte, V., Zhai, P., Pörtner, H. O., Roberts, D., Skea, J., Shukla, P.R., ... Waterfield, T., 2018. Global warming of 1.5 ºC. Intergovernmental Panel on Climate Change, Switzerland, 32 pp.

Morello, J., Matteucci, S.D., Rodriguez, A.F., Silva, M.E., Mesopotámica, P., Llana, P., 2012. Ecorregiones y complejos Ecosistémicos de Argentina. Orientación Gráfica Editora, 773 pp., Buenos Aires

NOAA, 2022. Cold and warm episodes by season. Available at https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (last access: 03/05/2022).

Pezzola, A., Winschel, C., 2004. Estudio espacio temporal de incendios rurales, utilizando percepción remota y SIG. Boletín Técnico 20, 12 pp.

Ribeiro, A.F., Brando, P.M., Santos, L., Rattis, L., Hirschi, M., Hauser, M., Seneviratne, S.I., Zscheischler, J., 2022. A compound event-oriented framework to tropical fire risk assessment in a changing climate. Environmental Research Letters 17, 065015. https://doi.org/10.1088/1748-9326/ac7342

Sample, M., Thode, A.E., Peterson, C., Gallagher, M.R., Flatley, W., Friggens, M., Evans, A., Loehman, R., Hedwall, S., Brandt, L., Janowiak, M., Swanston, C., 2022. Adaptation strategies and approaches for managing fire in a changing climate. Climate 10, 58. https://doi.org/10.3390/cli10040058

Scherger, L.E., Valdes-Abellan, J., Zanello, V., Lexow, C., 2022. Projecting climate change effect on soil water fluxes and urea fertilizer fate in the semiarid pampas of Argentina. Earth Systems and Environment 6, 745-758. https://doi.org/10.1007/s41748-021-00289-4

Vanzolini, J.I., Galantini, J.A., Martínez, J.M., Suñer, L., 2017. Changes in soil pH and phosphorus availability during decomposition of cover crop residues. Archives of Agronomy and Soil Science 63, 1864-1874. https://doi.org/10.1080/03650340.2017.1308493

Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I., Angulo, M., El Kenawy, A., 2010. A new global 0.5 gridded dataset 1901–2006 of a multiscalar drought index: comparison with current drought index datasets based on the Palmer Drought Severity Index. Journal of Hydrometeorology 11, 1033-1043. https://doi.org/10.1175/2010JHM1224.1

Wang, B., Zhang, M., Wei, J., Wang, S. J, Li, S.S., Ma, Q., Li, X.F., Pan, S.K., 2013.Changes in extreme events of temperature and precipitation over Xinjiang, Northwest China, during 1960–2009. Quaternary International 298, 141-151. https://doi.org/10.1016/j.quaint.2012.09.010

Wang, C., Xie, S.-P., Carton, J.A., 2004. A Global Survey of Ocean-Atmosphere Interaction and Climate Variability. Earth Climate: The Ocean-Atmosphere Interaction 147, 1-19. https://doi.org/10.1029/147GM01

Wehner, M.F., Arnold, J.R., Knutson, T., Kunkel, K.E., LeGrande A.N., 2017. Droughts, floods, and wildfires. In: D.J. Wuebbles, D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart, T.K. Maycock (Eds.). Climate Science Special Report: Fourth National Climate Assessment, U.S. Global Change Research Program, pp. 231-256, Washington, https://doi.org/10.7930/J0CJ8BNN

Winschel, C.I., 2017. Integración por medio de geotecnologías de la información ambiental en estudios de degradación de los suelos para los partidos de Villarino y Patagones, provincia de Buenos Aires, Argentina (PhD Dissertation). Universidad Nacional del Sur, Bahía Blanca, 219 pp.

Worku, G., Teferi, E., Bantider, A., Dile, Y. T., 2018. Observed changes in extremes of daily rainfall and temperature in Jemma Sub-Basin, Upper Blue Nile Basin, Ethiopia. Theoretical and Applied Climatology 135, 839-854. https://doi.org/10.1007/s00704-018-2412-x

Wu, Q., Zuo, Q., Han, C., Ma, J., 2022. Integrated assessment of variation characteristics and driving forces in precipitation and temperature under climate change: A case study of Upper Yellow River basin, China. Atmospheric Research 272, 106156. https://doi.org/10.1016/j.atmosres.2022.106156

Xu, R., Yu, P., Abramson, M.J., Johnston, F.H., Samet, J.M., Bell, M.L., Haines, A., Li, S., Guo, Y., 2020. Wildfires, global climate change, and human health. New England Journal of Medicine 383, 2173-2181. https://doi.org/10.1056/NEJMsr2028985

Zupichiatti, V., Zeballos, S.R., Whitworth‐Hulse, J.I., Gurvich, D.E., 2022. Survival and growth of cactus species after a wildfire in central Argentina: Differences among species and the effects of microenvironment characteristics. Austral Ecology 47, 482-490. https://doi.org/10.1111/aec.13102

Published

24-11-2023

How to Cite

1.
Ferrelli F, Casado A. Influence of climate variability on fire generation: Myths and facts in southern Pampas (Argentina). CIG [Internet]. 2023 Nov. 24 [cited 2024 Apr. 28];. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/5774

Issue

Section

Articles