The Role of Green Roofs in Climate Change Mitigation and Adaptation
Analyzing Performance During Extreme Rainfall Events
DOI:
https://doi.org/10.18172/cig.6411Keywords:
Green roof, water balance model, runoff, extreme precipitation events, native species, sustainable citiesAbstract
This study evaluated the water storage and runoff capacities of an extensive green roof simulator in Bahía Blanca, Argentina, during the region's most extreme precipitation event in 47 years. The analysis involved a time series of daily precipitation from 1961 to 2022. A Green Roof model was applied using daily precipitation data, potential evapotranspiration, and field-measured water storage capacity data from 2022. The model was based on a 1 m² green roof simulator, with 50 % of its surface covered by native species. The substrate depth was set at 15 cm, with a soil water storage capacity of 58.7 mm. Precipitation in Bahía Blanca showed considerable variability across temporal scales. The most frequent events (89 %) involved less than 20 mm of rainfall, followed by events between 20.1 mm and 40 mm (8 %). Eight events with precipitation between 80.1 mm and 100 mm were recorded, with March 24, 2022, marking the highest daily rainfall in 15 years (90.3 mm). However, when examining three-day accumulated rainfall, the period from March 23 to 25, 2022, accumulated 150.3 mm, making it the most extreme event in the last 47 years and the second highest in the 62 years analyzed. During this event, total runoff amounted to 83.4 mm, indicating a substantial water storage of 44.6 % by the green roof simulator. Given the projected increase in the frequency and intensity of extreme rainfall events, green roofs offer a sustainable and innovative solution for mitigating and adapting to climate change impacts. Additionally, they serve as crucial urban green infrastructures for managing runoff, particularly in regions prone to intense precipitation events like Bahía Blanca.
Downloads
References
Akther, M., He, J., Chu, A., Huang, J., Van Duin, B. 2018. A review of green roof applications for managing urban stormwater in different climatic zones. Sustainability, 10(8), 2864. https://doi.org/10.3390/su10082864
Aliaga, V. S., Ferrelli, F., Piccolo, M. C. 2017. Regionalization of climate over the Argentine Pampas. International Journal of Climatology, 37(S1), 1237-1247. https://doi.org/10.1002/joc.4765
Allen, R.G., Pereira, L. S., Raes, D., Smith, M. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper, 56, FAO Rome, 300(9), D05109.
Avashia, V., Garg, A. 2020. Implications of land use transitions and climate change on local flooding in urban areas: An assessment of 42 Indian cities. Land Use Policy, 95, 104571. https://doi.org/10.1016/j.landusepol.2020.104571
Barbaro, L.A., Soto, M.S., Sisaro, D., Karlanian, M., Stancanelli, S. 2017. Sustratos para techos verdes sustentables (extensivos). Ediciones INTA.
Bekele, F., Mosisa, N., Terefe, D. 2017. Analysis of current rainfall variability and trends over Bale-Zone SouthEastern highland of Ethiopia. Climate Change, 3(12), 889-902. https://doi.org/10.4172/2157-7617.1000417
Beecham, S., Razzaghmanesh, M. 2015. Water quality and quantity investigation of green roofs in a dry climate. Water Research, 70, 370-384. https://doi.org/10.1016/j.watres.2014.12.015
Berggren, K., Olofsson, M., Viklander, M., Svensson, G., Gustafsson, A.M. 2012. Hydraulic impacts on urban drainage systems due to changes in rainfall caused by climatic change. Journal of Hydrologic Engineering, 17(1), 92-98. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000406
Berndtsson, J.C. 2010. Green roof performance towards management of runoff water quantity and quality: A review. Ecological Engineering, 36(4), 351-360. https://doi.org/10.1016/j.ecoleng.2009.12.014
Bohn, V.Y., Piccolo, M.C., Perillo, G.M.E. 2011. Análisis de los períodos secos y húmedos en el sudoeste de la provincia de Buenos Aires (Argentina). Revista de Climatología, 11, 31-44.
Brandão, C., do Rosário Cameira, M., Valente, F., de Carvalho, R.C., Paço, T.A. 2017. Wet season hydrological performance of green roofs using native species under Mediterranean climate. Ecological Engineering, 102, 596-611. https://doi.org/10.1016/j.ecoleng.2017.02.025
Brendel, A.S., Bohn, V.Y., Piccolo, M.C. 2017. Variabilidad de la precipitación y su relación con los rendimientos agrícolas en una región semiárida de la llanura pampeana (Argentina). Estudios Geográficos, 78(282), 7-29. https://doi.org/10.3989/estgeogr.201723
Brendel, A., Ferrelli, F., Piccolo, M.C., Perillo, G.M.E. 2021. Impacto de eventos pluviométricos sobre el caudal diario de un río de la región Pampeana (Argentina). Interespaço: Revista de Geografía e Interdisciplinaridade, 7(e202112), 1-22. http://doi.org/10.18764/2446-6549.e202112
Brendel, A.S. 2023. Impacto del cambio climático: Un análisis espacial del riesgo futuro al cambio climático en el sur de la Región Pampeana (Argentina). Papeles de Geografía, 69, 155-168. https://doi.org/10.6018/geografia.563951
Burszta-Adamiak, E., Mrowiec, M. 2013. Modelling of green roofs' hydrologic performance using EPA's SWMM. Water Science and Technology, 68(1), 36-42. https://doi.org/10.2166/wst.2013.238
Busker, T., de Moel, H., Haer, T., Schmeits, M., van den Hurk, B., Myers, K., ... & Aerts, J. 2022. Blue-green roofs with forecast-based operation to reduce the impact of weather extremes. Journal of Environmental Management, 301, 113750. https://doi.org/10.1016/j.jenvman.2021.113750
Butler, C., Butler, E., Orians, C. M. 2012. Native plant enthusiasm reaches new heights: Perceptions, evidence, and the future of green roofs. Urban forestry & urban greening, 11(1), 1-10. https://doi.org/10.1016/j.ufug.2011.11.002
Carter, T., Jackson, C.R. 2007. Vegetated roofs for stormwater management at multiple spatial scales. Landscape and Urban Planning, 80(1-2), 84-94. https://doi.org/10.1016/j.landurbplan.2006.06.005
Cassel, D.K., Nielsen, D.R. 1986. Chapter 36: Field Capacity and Available Water Capacity. In Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods. Soil Science Society of America. Madison, WI, USA. 2nd edition.
Driscoll, C.T., Eger, C.G., Chandler, D.G., Davidson, C.I., Roodsari, B.K., Flynn, C.D., ... & Groffman, P.M. 2015. Green infrastructure: Lessons from science and practice. A publication of the Science Policy Exchange, 32.
Ferrelli, F., Brendel, A.S., Aliaga, V.S., Piccolo, M.C., Perillo, G.M.E. 2019. Climate regionalization and trends based on daily temperature and precipitation extremes in the south of the Pampas (Argentina). Cuadernos de Investigación Geográfica: Geographical Research Letters, 45(1), 393-416. https://doi.org/10.18172/cig.3622
Ferrelli, F., Brendel, A.S., Piccolo, M.C., Perillo, G.M.E. 2021. Evaluación de la tendencia de la precipitación en la región Pampeana (Argentina) durante el período 1960-2018. Raega-O Espaço Geográfico em Análise, 51, 41-57. http://dx.doi.org/10.5380/raega.v51i0.69962
Gong, Y., Yin, D., Li, J., Zhang, X., Wang, W., Fang, X., Wang, Q. 2019. Performance assessment of extensive green roof runoff flow and quality control capacity based on pilot experiments. Science of the Total Environment, 687, 505-515. https://doi.org/10.1016/j.scitotenv.2019.06.063
Hachoumi, I., Pucher, B., Vito-Francesco, D., Prenner, F., Ertl, T., Langergraber, G., Allabashi, R. 2021. Impact of green roofs and vertical greenery systems on surface runoff quality. Water, 13(19), 2609. https://doi.org/10.3390/w13192609
Hamouz, V., Pons, V., Sivertsen, E., Raspati, G.S., Bertrand-Krajewski, J.L., Muthanna, T.M. 2020. Detention-based green roofs for stormwater management under extreme precipitation due to climate change. Blue-Green Systems, 2(1), 250-266. https://doi.org/10.2166/bgs.2020.101
Harper, G.E., Limmer, M.A., Showalter, W.E., Burken, J.G. 2015. Nine-month evaluation of runoff quality and quantity from an experiential green roof in Missouri, USA. Ecological Engineering, 78, 127-133. https://doi.org/10.1016/j.ecoleng.2014.06.013
He, Y., Yu, H., Ozaki, A., Dong, N. 2020. Thermal and energy performance of green roof and cool roof: A comparison study in Shanghai area. Journal of Cleaner Production, 267, 122205. https://doi.org/10.1016/j.jclepro.2020.122205
Intergovernmental Panel on Climate Change (IPCC). 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, et al., Eds.). Cambridge University Press. https://doi.org/10.1017/9781009157896
Leandro, J., Chen, K.F., Wood, R.R., Ludwig, R. 2020. A scalable flood-resilience-index for measuring climate change adaptation: Munich city. Water Research, 173, 115502. https://doi.org/10.1016/j.watres.2020.115502
Lee, J. Y., Lee, M. J., Han, M. 2015. A pilot study to evaluate runoff quantity from green roofs. Journal of Environmental Management, 152, 171-176. https://doi.org/10.1016/j.jenvman.2015.01.049
Li, C., Liu, M., Hu, Y., Shi, T., Qu, X. 2018. Effects of urbanization on direct runoff characteristics in urban functional zones. Science of the Total Environment, 643, 301-311. https://doi.org/10.1016/j.scitotenv.2018.06.211
Liu, W., Feng, Q., Chen, W., Wei, W., Deo, R.C. 2019. The influence of structural factors on stormwater runoff retention of extensive green roofs: New evidence from scale-based models and real experiments. Journal of Hydrology, 569, 230-238. https://doi.org/10.1016/j.jhydrol.2018.12.037
Liu, W., Feng, Q., Deo, R.C., Yao, L., Wei, W. 2020. Experimental study on the rainfall-runoff responses of typical urban surfaces and two green infrastructures using scale-based models. Environmental Management, 66(4), 683-693. https://doi.org/10.1007/s00267-020-01339-9
Liu, W., Engel, B. A., Feng, Q. 2021. Modelling the hydrological responses of green roofs under different substrate designs and rainfall characteristics using a simple water balance model. Journal of Hydrology, 602, 126786. https://doi.org/10.1016/j.jhydrol.2021.126786
Mastrandrea, A., Pérez, M.I. 2022. Representaciones sociales del riesgo hídrico: Análisis crítico del discurso periodístico en la cuenca del arroyo Napostá Grande (Bahía Blanca, Argentina). Revista Universitaria de Geografía, 31(1), 19-22. https://doi.org/10.52292/j.rug.2022.31.1.0039
Mentens, J., Raes, D., Hermy, M. 2006. Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landscape and Urban Planning, 77(3), 217-226. https://doi.org/10.1016/j.landurbplan.2005.02.010
Muthuwatta, L., Sood, A., McCartney, M., Silva, N.S., Opere, A. 2018. Understanding the impacts of climate change in the Tana River Basin, Kenya. Proceedings of the International Association of Hydrological Sciences, 379, 37-42. https://doi.org/10.5194/piahs-379-37-2018
Paço, T.A., Cruz de Carvalho, R., Arsénio, P., Martins, D. 2019. Green roof design techniques to improve water use under Mediterranean conditions. Urban science, 3(1), 14. https://doi.org/10.3390/urbansci3010014
Padhiary, J., Patra, K.C., Das, D.M., Sahoo, B.C., Singh, K.K. 2018. Prediction of climate change impact on streamflow and evapotranspiration in Baitarani basin using SWAT model. Journal of Agrometeorology, 20(4), 325-328. https://doi.org/10.54386/jam.v20i4.576
Palla, A., Gnecco, I., Laurenti, A. 2009. Hydrologic restoration in the urban environment using green roofs. Water and Environmental Journal, 23(3), 209-220. https://doi.org/10.1111/j.1747-6593.2008.00133.x
Paule-Mercado, M.A., Lee, B.Y., Memon, S.A., Umer, S.R., Salim, I., Lee, C.H. 2017. Influence of land development on stormwater runoff from a mixed land use and land cover catchment. Science of the Total Environment, 599, 2142-2155. https://doi.org/10.1016/j.scitotenv.2017.05.081
Peng, Z., Smith, C., Stovin, V. 2019. Internal fluctuations in green roof substrate moisture content during storm events: Monitored data and model simulations. Journal of Hydrology, 573, 872-884. https://doi.org/10.1016/j.jhydrol.2019.03.051
Pérez, S., Sierra, E., Momo, F., Massobrio, M. 2015. Changes in average annual precipitation in Argentina’s Pampa region and their possible causes. Climate, 3(1), 150-167. https://doi.org/10.3390/cli3010150
Perillo, V.L., Brendel, A.S., Ferrelli, F., Gutiérrez, A., Vitale, A.J., Marinangeli, P., Piccolo, M.C. 2023. CO2 flux dynamics of exotic and native species in an extensive green roof simulator with hydric deficit. Urban Climate, 49, 101567. https://doi.org/10.1016/j.uclim.2023.101567
Pour, S.H., Abd Wahab, A.K., Shahid, S., Asaduzzaman, M., Dewan, A. 2020. Low impact development techniques to mitigate the impacts of climate-change-induced urban floods: Current trends, issues and challenges. Sustainable Cities and Society, 62, 102373. https://doi.org/10.1016/j.scs.2020.102373
Raes, D., Timmerman, A., Hermy, M., Mentens, J. 2006. GreenRoof – water balance model. K.U.Leuven University Faculty of Bioscience Engineering Division of Soil and Water Management, Leuven, Belgium.
Rowe, D.B. 2011. Green roofs as a means of pollution abatement. Environmental Pollution, 159(8-9), 2100-2110. https://doi.org/10.1016/j.envpol.2010.10.029
Shafique, M., Kim, R., Rafiq, M. 2018. Green roof benefits, opportunities, and challenges–A review. Renewable and Sustainable Energy Reviews, 90, 757-773. https://doi.org/10.1016/j.rser.2018.03.060
Sims, A.W., Robinson, C.E., Smart, C.C., O'Carroll, D.M. 2019. Mechanisms controlling green roof peak flow rate attenuation. Journal of Hydrology, 577, 123972. https://doi.org/10.1016/j.jhydrol.2019.123972
Speak, A.F., Rothwell, J.J., Lindley, S.J., Smith, C.L. 2012. Urban particulate pollution reduction by four species of green roof vegetation in a UK city. Atmospheric Environment, 61, 283-293. https://doi.org/10.1016/j.atmosenv.2012.07.043
Starry, O., Lea-Cox, J., Ristvey, A., Cohan, S. 2016. Parameterizing a water-balance model for predicting stormwater runoff from green roofs. Journal of Hydrologic Engineering, 21(12), 04016046. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001451
Stovin, V., Vesuviano, G., Kasmin, H. 2012. The hydrological performance of a green roof test bed under UK climatic conditions. Journal of Hydrology, 414, 148-161. https://doi.org/10.1016/j.jhydrol.2011.10.022
Todorov, D., Driscoll, C.T., Todorova, S. 2018. Long‐term and seasonal hydrologic performance of an extensive green roof. Hydrological Processes, 32(16), 2471-2482. https://doi.org/10.1002/hyp.13155
Vanuytrecht, E., Van Mechelen, C., Van Meerbeek, K., Willems, P., Hermy, M., Raes, D. 2014. Runoff and vegetation stress of green roofs under different climate change scenarios. Landscape and Urban Planning, 122, 68-77. https://doi.org/10.1016/j.landurbplan.2013.11.001
Villarreal, E.L., Bengtsson, L. 2005. Response of a Sedum green-roof to individual rain events. Ecological Engineering, 25(1), 1-7. https://doi.org/10.1016/j.ecoleng.2004.11.008
Wong, G.K., Jim, C.Y. 2015. Identifying keystone meteorological factors of green-roof stormwater retention to inform design and planning. Landscape and Urban Planning, 143, 173-182. https://doi.org/10.1016/j.landurbplan.2015.07.010
Yin, J., Ye, M., Yin, Z., Xu, S. 2015. A review of advances in urban flood risk analysis over China. Stochastic Environmental Research and Risk Assessment, 29(3), 1063-1070. https://doi.org/10.1007/s00477-014-0939-7
Zapperi, P.A. (2014). Caracterización del escurrimiento urbano en la ciudad de Bahía Blanca. Revista Universitaria de Geografía, 23(2), 125-150.
Zhang, Y., Xia, J., Yu, J., Randall, M., Zhang, Y., Zhao, T., Shao, Q. 2018. Simulation and assessment of urbanization impacts on runoff metrics: Insights from land use changes. Journal of Hydrology, 560, 247-258. https://doi.org/10.1016/j.jhydrol.2018.03.031
Zhang, Z., Szota, C., Fletcher, T.D., Williams, N.S., Farrell, C. 2019. Green roof storage capacity can be more important than evapotranspiration for retention performance. Journal of Environmental Management, 232, 404-412. https://doi.org/10.1016/j.jenvman.2018.11.077
Zhang, S., Lin, Z., Zhang, S., Ge, D. 2021. Stormwater retention and detention performance of green roofs with different substrates: Observational data and hydrological simulations. Journal of Environmental Management, 291, 112682. https://doi.org/10.1016/j.jenvman.2021.112682
Zhou, Q., Leng, G., Su, J., Ren, Y. 2019. Comparison of urbanization and climate change impacts on urban flood volumes: Importance of urban planning and drainage adaptation. Science of the Total Environment, 658, 24-33. https://doi.org/10.1016/j.scitotenv.2018.12.184
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Andrea S. Brendel, Federico Ferrelli, Maximiliano Garay, Agustina Gutiérrez, Vanesa Perillo, María Cintia Piccolo

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain copyright of articles and authorize Cuadernos de Investigación Geográfica / Geographical Research Letters the first publication. They are free to share and redistribute the article without obtaining permission from the publisher as long as they give appropriate credit to the editor and the journal.
Self-archiving is allowed too. In fact, it is recommendable to deposit a PDF version of the paper in academic and/or institutional repositories.
It is recommended to include the DOI number.
This journal is licensed under a Creative Commons Attribution 4.0 International LicenseFunding data
-
Consejo Nacional de Investigaciones Científicas y Técnicas
Grant numbers ANPCYT-PICT 2021-832