Effects of DEM Resolution and Area Thresholds on Automated Fluvial Morphometry, Arroyo del Oro (Argentina)

Authors

DOI:

https://doi.org/10.18172/cig.6337

Keywords:

DEM resolution, area thresholds, morphometric parameters and indices, Arroyo del Oro

Abstract

The resolution of Digital Elevation Models (DEM) as well as the area threshold to define streams and catchments are important sources of uncertainty in automated fluvial morphometry. This study examines the applicability of three global surface models, produced with resolutions of 12.5 (ALOS), 30 and 90 m (SRTM), along with five area thresholds ranging from 0.15 to 10%. It aims at evaluating the effects of varying resolution-threshold combinations on the extraction of morphometric parameters and indices (PIm) in the Arroyo del Oro, a mountain basin located in south-western Buenos Aires (Argentina). The analysis considers the accuracy of drainage definitions, the variability of resulting PIm, and its implications for flood and water erosion assessments. Results show that the higher thresholds affect the PIm that depend on the complexity of the drainage network. Coarser resolutions impact on relief, slope and length parameters, but yield small discrepancies for the remaining PIm. For the 0.15% threshold, SRTM30 provides good fit of drainage composition parameters, and it is therefore suitable to assess the efficiency and capacity of the basin to evacuate floods. However, the use of higher resolution (ALOS12) is most suitable to assess erosion potential, due to better fit of slope-dependent PIm. Applications based on the global characteristics of middle to large-sized basins rely on a more flexible choice, as geometry parameters are unaffected by resolution and threshold.

Downloads

Download data is not yet available.

References

Boulton, S.J., Stokes, M., 2018. Which DEM is best for analyzing fluvial landscape development in mountainous terrains? Geomorphology 310, 168-187. https://doi.org/10.1016/j.geomorph.2018.03.002 DOI: https://doi.org/10.1016/j.geomorph.2018.03.002

Buakhao, W., Kangrang, A., 2016. DEM resolution impact on the estimation of the physical characteristics of watersheds by using SWAT. Advances in Civil Engineering 2016, e8180158. https://doi.org/10.1155/2016/8180158 DOI: https://doi.org/10.1155/2016/8180158

Casado, A., 2021. Rainfall-runoff modelling in dryland catchments, Sauce Grande, Argentina. Tecnología y ciencias del agua 12, 254-303. https://doi.org/10.24850/j-tyca-2021-05-06 DOI: https://doi.org/10.24850/j-tyca-2021-05-06

Casado, A., Peiry, J.-L., Campo, A.M., 2016. Geomorphic and vegetation changes in a meandering dryland river regulated by a large dam, Sauce Grande River, Argentina. Geomorphology 268, 21-34. https://doi.org/10.1016/j.geomorph.2016.05.036 DOI: https://doi.org/10.1016/j.geomorph.2016.05.036

Courty, L.G., Soriano Monzalvo, J.C., Pedrozo Acuña, A., 2019. Evaluation of open‐access global digital elevation models (AW3D30, SRTM, and ASTER) for flood modelling purposes. Journal of Flood Risk Management 12, e12550. https://doi.org/10.1111/jfr3.12550 DOI: https://doi.org/10.1111/jfr3.12550

da Ros, D., Borga, M,. 1997. Use of digital elevation model data for the derivation of the geomorphological instantaneous unit hydrograph. Hydrological processes 11, 13-33. https://doi.org/10.1002/(SICI)1099-1085(199701)11 DOI: https://doi.org/10.1002/(SICI)1099-1085(199701)11:1<13::AID-HYP400>3.0.CO;2-M

Dávila Hernández, S., González Trinidad, J., Júnez Ferreira, H.E., Bautista Capetillo, C.F., Morales de Ávila, H., Cázares Escareño, J., Ortiz Letechipia, J., Robles Rovelo, C.O., López Baltazar, E.A., 2022. Effects of the Digital Elevation Model and hydrological processing algorithms on the geomorphological parameterization. Water 14, 2363. https://doi.org/10.3390/w14152363 DOI: https://doi.org/10.3390/w14152363

Datta, S., Karmakar, S., Mezbahuddin, S., Hossain, M.M., Chaudhary, B.S., Hoque, M.E., Abdullah Al Mamun, M.M., Baul, T.K., 2022. The limits of watershed delineation: implications of different DEMs, DEM resolutions, and area threshold values. Hydrology Research 53, 1047-1062. https://doi.org/10.2166/nh.2022.126 DOI: https://doi.org/10.2166/nh.2022.126

Felicísimo, A.M., 1994. Parametric statistical method for error detection in digital elevation models. ISPRS Journal of Photogrammetry and Remote Sensing 49, 29-33. https://doi.org/10.1016/0924-2716(94)90044-2 DOI: https://doi.org/10.1016/0924-2716(94)90044-2

Ferrando, F.J., 1994. Métodos hidromorfométricos para determinar la erosividad en cuencas hidrográficas. Tecnología y ciencias del agua 9, 5-14.

Fisher, P.F., Tate, N.J., 2006. Causes and consequences of error in digital elevation models. Progress in Physical Geography 30, 467-489. https://doi.org/10.1191/0309133306pp492ra DOI: https://doi.org/10.1191/0309133306pp492ra

Gallant, J., Read, A., 2016. A near-global bare-Earth DEM from SRTM. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 41, 137-141. https://doi.org/10.5194/isprs-archives-XLI-B4-137-2016 DOI: https://doi.org/10.5194/isprsarchives-XLI-B4-137-2016

Gil, V., 2012. Geomorfología y procesos de vertiente. Cuenca alta del río Sauce Grande (Buenos Aires, Argentina). Cuaternario y Geomorfología 26, 133-150.

Gil, V., Gentili, J., Campo, A.M., Jelinski, G., Crisafulli, M., 2016. Evaluación del peligro potencial de crecidas en cuencas serranas. Sistema de Ventania, provincia de Buenos Aires. III Encuentro de Investigadores en Formación en Recursos Hídricos, Ezeiza, Argentina.

Gil, V., Volonte, A., Campo, A.M., 2019. Índices morfométricos a diferentes escalas aplicados al peligro de crecidas en cuencas pequeñas. Cuenca del arroyo San Bernardo, Argentina. Revista Brasileira de Geomorfologia 20, 811-824. https://dx.doi.org/10.20502/www.ugb.org.br DOI: https://doi.org/10.20502/rbg.v20i4.1598

Gil, V., Zapperi, P., Campo, A.M., Iuorno, M.V., Ramborger, M.A., 2008. Análisis de las precipitaciones de otoño y primavera en el Suroeste bonaerense. VII Jornadas de Geografía Física, Jujuy, Argentina.

Gravelius, H., 1914. Grundriß der gesamten Gewässerkunde. Band I: Flußkunde (Compendium of Hydrology. Volume I: Rivers). Göschen, Berlin, Germany. DOI: https://doi.org/10.1515/9783112452363

Hancock, G.R., 2005. The use of digital elevation models in the identification and characterization of catchments over different grid scales. Hydrological Processes 19, 1727-1749. https://doi.org/10.1002/hyp.5632 DOI: https://doi.org/10.1002/hyp.5632

Hengl, T., Gruber, S., Shrestha, D., 2004. Reduction of errors in digital terrain parameters used in soil-landscape modelling. International Journal of Applied Earth Observation 5, 97-112. https://doi.org/10.1016/j.jag.2004.01.006 DOI: https://doi.org/10.1016/j.jag.2004.01.006

Horton, R.E., 1945. Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Bulletin of the Geological Society of America 56, 275-370. DOI: https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2

INDEC, 2022. Censo Nacional de Población, Hogares y Viviendas 2022. Bases de datos REDATAM. Available at: https://redatam.indec.gob.ar/ (last access: 23/12/2024).

INTA, 2018. Carta de suelos de la República Argentina. 3963-5 TORNQUIST Available at: https://zenodo.org/records/7837681 (last access: 23/12/2024).

Lee, G., Kim, J.C., 2011. Comparative analysis of geomorphologic characteristics of DEM-based drainage networks. Journal of Hydrologic Engineering 16, 137-147. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000295 DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0000295

Li, J., Wong, D., 2010. Effects of DEM sources on hydrologic applications. Computers, Environment and Urban Systems 34, 251-261. https://doi.org/10.1016/j.compenvurbsys.2009.11.002 DOI: https://doi.org/10.1016/j.compenvurbsys.2009.11.002

Lopez García, M.J., Camarasa Belmonte, A.M., 1999. Use of geomorphological units to improve drainage network extraction from a DEM: Comparison between automated extraction and photointerpretation methods in the Carraixet catchment (Valencia, Spain). International Journal of Applied Earth Observation and Geoinformation 1, 187-195. https://doi.org/10.1016/S0303-2434(99)85012-0 DOI: https://doi.org/10.1016/S0303-2434(99)85012-0

Montgomery, D.R., Foufoula Georgiou, E., 1993. Channel network source representation using digital elevation models. Water Resources Research 29, 3925-3934. https://doi.org/10.1029/93WR02463 DOI: https://doi.org/10.1029/93WR02463

NASA JPL., 2021. NASADEM Merged DEM Global 1 arc second V001. Distributed by OpenTopography. https://doi.org/10.5069/G93T9FD9. Accessed: 2024-12-16

Niipele, J.N., Chen, J., 2019. The usefulness of alos-palsar dem data for drainage extraction in semi-arid environments in The Iishana sub-basin. Journal of Hydrology: Regional Studies 21, 57-67. https://doi.org/10.1016/j.ejrh.2018.11.003 DOI: https://doi.org/10.1016/j.ejrh.2018.11.003

Nourani, V., Mokhtarian-Asl, S., Khosravi-Sorkhkolaee, M., Sharghi, E., 2013. Effect of DEM type and resolution in extraction of hydro-geomorphologic parameters. In: V. Mladenov (Ed.), Recent Advances in Continuum Mechanics, Hydrology and Ecology. WSEAS, Rhodes Island, Greece, pp. 98-103.

NRCS, 2010, Part 630: Hydrology, Chapter 15: Time of concentration. Natural Resources Conservation Service, USDA, Washington DC, USA, 29 pp.

O'Callaghan, J.F., Mark, D.M., 1984. The extraction of drainage networks from digital elevation data. Computer vision, graphics, and image processing 28, 323-344. https://doi.org/10.1016/S0734-189X(84)80011-0 DOI: https://doi.org/10.1016/S0734-189X(84)80011-0

O'Loughlin, F.E., Paiva, R.C., Durand, M., Alsdorf, D., Bates, P., 2016. A multi-sensor approach towards a global vegetation corrected SRTM DEM product. Remote Sensing of Environment 182, 49-59. https://doi.org/10.1016/j.rse.2016.04.018 DOI: https://doi.org/10.1016/j.rse.2016.04.018

Ozulu, I.M., Gökgöz, T., 2018. Examining the stream threshold approaches used in hydrologic analysis. ISPRS International Journal of Geo-Information 7, 201. https://doi.org/doi:10.3390/ijgi7060201 DOI: https://doi.org/10.3390/ijgi7060201

Rodríguez Iturbe, I., Valdés, J.B., 1979. The geomorphologic structure of hydrologic response. Water resources research 15, 1409-1420. https://doi.org/10.1029/WR015i006p01409 DOI: https://doi.org/10.1029/WR015i006p01409

Romero Díaz, M.A., López Bermúdez, F., 1987. Morfometría de redes fluviales: revisión crítica de los parámetros más utilizados y aplicación al Alto Guadalquivir. Papeles de Geografía 12, 47-62.

Scian, B., 2000. Episodios ENSO y su relación con las anomalías de precipitación en la pradera pampeana. Geoacta 25, 23-40.

Schumm, S.A., 1956. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological society of America bulletin 67, 597-646. https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2 DOI: https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2

Shekar, P.R., Mathew, A., 2024. Morphometric analysis of watersheds: a comprehensive review of data sources, quality, and geospatial techniques. Watershed Ecology and the Environment 6, 13-25. https://doi.org/10.1016/j.wsee.2023.12.001 DOI: https://doi.org/10.1016/j.wsee.2023.12.001

Tarboton, D.G., Bras, R.L., Rodriguez Iturbe, I., 1991. On the extraction of channel networks from digital elevation data. Hydrological Processes 5, 81-100. https://doi.org/10.1002/hyp.3360050107 DOI: https://doi.org/10.1002/hyp.3360050107

Thompson, J.A., Bell, J.C., Butler, C.A., 2001. Digital elevation model resolution: effects on terrain attribute calculation and quantitative soil-landscape modeling. Geoderma 100, 67-89. https://doi.org/10.1016/S0016-7061(00)00081-1 DOI: https://doi.org/10.1016/S0016-7061(00)00081-1

USACE, 2023, Hydrologic Modeling System HEC-HMS User's Manual Hydrologic Engineering Center, U.S. Army Corps of Engineers, Davis, CA, USA.

Volonté, A., Gil, V., 2023. Diagnóstico y monitoreo de ambientes fluviales a partir de geoindicadores. Cuenca del Oro (Argentina). Cuadernos Geográficos 62, 130-149. https://doi.org/10.30827/cuadgeo.v62i1.25343 DOI: https://doi.org/10.30827/cuadgeo.v62i1.25343

Wang, Y.-J., Qin, C.-Z., Zhu, A.-X., 2019. Review on algorithms of dealing with depressions in grid DEM. Annals of GIS 25, 83-97. https://doi.org/10.1080/19475683.2019.1604571 DOI: https://doi.org/10.1080/19475683.2019.1604571

Wu, M., Shi, P., Chen, A., Shen, C., Wang, P., 2017. Impacts of DEM resolution and area threshold value uncertainty on the drainage network derived using SWAT. Water SA 43, 450-462. https://doi.org/10.4314/wsa.v43i3.10 DOI: https://doi.org/10.4314/wsa.v43i3.10

Wu, S., Li, J., Huang, G.H., 2008. A study on DEM-derived primary topographic attributes for hydrologic applications: Sensitivity to elevation data resolution. Applied Geography 28, 210-223. https://doi.org/10.1016/j.apgeog.2008.02.006 DOI: https://doi.org/10.1016/j.apgeog.2008.02.006

Zapperi, P., Casado, A., Gil, V., Campo, A.M., 2006. Caracterización de las precipitaciones invernales en el Suroeste bonaerense. In: N. Cazzaniga, M. Vaquero (Eds.), Ambiente natural, campo y ciudad: Estrategias de uso y conservación en el Sudoeste Bonaerense. Ediciones UNS, Bahía Blanca, pp. 63-68.

Zapperi, P., Ramos, B., Gil, V., Campo, A.M., 2007. Caracterización de las precipitaciones estivales en el Suroeste bonaerense. In: Contribuciones Científicas. GAEA, Posadas, pp. 483-491.

Zavoianu, I., 1985. Morphometry of drainage basins. Serie 20: developments in water science. Elsevier, Amsterdam, Neederlands.

Published

22-04-2025

How to Cite

1.
Casado A, Berón de la Puente FJ, Gil V. Effects of DEM Resolution and Area Thresholds on Automated Fluvial Morphometry, Arroyo del Oro (Argentina). CIG [Internet]. 2025 Apr. 22 [cited 2025 Apr. 28];. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/6337

Issue

Section

Articles