Surveying three-dimensional perspectives of the flow structure around the bridge pile depending on the vegetation pattern distribution

Authors

  • Nazanin Mohammadzade Miyab Water Engineering Department, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
  • Ramin Fazloula Water Engineering Department, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
  • Manouchehr Heidarpour Water Engineering Department, Faculty of Agriculture, Isfahan University of Technology, Isfahan, Iran
  • Ataollah Kavian Watershed Management Department, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
  • Jesús Rodrigo-Comino Dr Dr Ing./PhD DEng

DOI:

https://doi.org/10.18172/cig.5778

Keywords:

coherent structure, octant analysis, quadrant analysis, scouring, vegetation management, nature-based solutions

Abstract

Modeling techniques have enabled us to understand how to protect vital infrastructures using nature-based solutions. In this research, we demonstrated that by selecting a specific vegetation pattern distribution upstream of the pile as a nature-based solution, we could reduce the amount of scouring around the bridge piles. This is essential to avoid the negative impacts that occur after landslides, flash floods, or mudflows close to populated areas. This solution can mitigate the global problem of bridge failure. To achieve this goal, an Acoustic Doppler Velocimetry device (ADV) was used to measure the velocity components in an experimental channel with a 90 cm width, 15 meters long, and 60 cm high. Two different widths of vegetation were used: the overall vegetation, with a 90 cm width, and the patched one, with a 10 cm width, positioned upstream of the bridge pile. In the case of using patched vegetation, a 36% reduction was observed in the amount of scouring around the bridge pile compared to the free-vegetation case, showing the positive effect of using vegetation to reduce scouring. In both cases, the amount of negative Reynolds shear stresses decreased when the presence of vegetation was registered. Using octant analysis, the overall vegetation was shown to convert internal events into external ones in front of the pile. However, in the case of using patched vegetation, internal events were also observed in addition to external events. Patchy vegetation changed the transverse direction of outward vortices from internal to external. In the presence of patchy vegetation, the dominance of the inward event decreased sharply. The presence of vegetation in the flow path affected some bursting events and, as a result, reduced scouring. The results showed that each of the used vegetation models has a different effect on bursting events, and these events can affect the amount of scouring hole depth.

Downloads

Download data is not yet available.

Author Biography

Jesús Rodrigo-Comino, Dr Dr Ing./PhD DEng

Licenciado en Geografía  por la Universidad de Málaga en el curso   2011-2012. Realizó el Trabajo Fin de Carrera (tesina) bajo la dirección   del Dr. Senciales titulado: “Los suelos de la provincia de Málaga:   Revisión en función de los criterios de la clasificación de FAO-WRB   (2006)”. También con él, ha publicado una serie de artículos   relacionados con cuestiones geomorfológicas en los Montes de Málaga o   las plataformas travertínicas. Ha participado en actividades de  Didáctica de la  Geografía con jóvenes preuniversitarios, publicando  resultados de esta  actividad en revistas de la Asociación de Geógrafos  Españoles junto con  el Dr. Delgado Peña. Está preparando la tesis  doctoral sobre procesos geomorfológicos en viñedos (Valle del Mosela y Axarquía),en colaboración con la Universidad de Trier (Alemania) con los profesores  Johannes Ries y Manuel Seeger y con el Departamento de Geografía de la Universidad de Málaga con los profesores José Damián Ruiz Sinoga y José María Senciales.

References

Afzalimehr, H., Riazi, P., Jahadi, M., Singh, V.P., 2021. Effect of vegetation patches on flow structures and the estimation of friction factor. ISH Journal of Hydraulic Engineering 27(sup1), 390-400. https://doi.org/10.1080/09715010.2019.1660920

Afzalimehr, H., Anctil, F., 2000. Accelerating shear velocity in gravel-bed channels. Hydrological Sciences Journal 45(1), 113-124. https://doi.org/10.1080/02626660009492309

Arneson, L.A., Zevenbergen, L.W., Lagasse, P.F., Clopper, P.E., 2012. Evaluating scour at bridges (No. FHWA-HIF-12-003). National Highway Institute (US).

Beg, M., Beg, S., 2013. Scour reduction around bridge piers: A review. International Journal of Engineering Inventions 2(7), pp.7-15.

Bento, A.M., Viseu, T., Pêgo, J.P., Couto, L., 2021. Experimental characterization of the flow field around oblong bridge piers. Fluids 6(11), 370. https://doi.org/10.3390/fluids6110370

Bernard, P.S., Handler, R.A., 1990. Reynolds stress and the physics of turbulent momentum transport. Journal of Fluid Mechanics 220, 99-124. https://doi.org/10.1017/S0022112090003202

Briaud, J.L., Chen, H.C., Li, Y., Nurtjahyo, P., Wang, J., 2005. SRICOS-EFA method for contraction scour in fine-grained soils. Journal of Geotechnical and Geoenvironmental Engineering 131(10), 1283-1294. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1283)

Breusers, H.N.C., Nicollet, G., Shen, H.W., 1977. Local scour around cylindrical piers. Journal of Hydraulic Research 15(3), 211-252. https://doi.org/10.1080/00221687709499645

Bridge, J.S., Bennett, S.J., 1992. A model for the entrainment and transport of sediment grains of mixed sizes, shapes, and densities. Water Resources Research 28(2), 337-363. https://doi.org/10.1029/91WR02570

Carnacina, I., Leonardi, N., Pagliara, S., 2019. Characteristics of flow structure around cylindrical bridge piers in pressure-flow conditions. Water 11(11), 2240. https://doi.org/10.3390/w11112240

Cao, Z., Pender, G., Meng, J., 2006. Explicit formulation of the Shields diagram for incipient motion of sediment. Journal of Hydraulic Engineering 132(10), 1097-1099. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:10(1097)

Caroppi, G., Västilä, K., Järvelä, J., Rowiński, P.M., Giugni, M., 2019. Turbulence at water-vegetation interface in open channel flow: Experiments with natural-like plants. Advances in Water Resources 127, 180-191. https://doi.org/10.1016/j.advwatres.2019.03.013

Cellino, M., Lemmin, U., 1999. Coherent flow structure analysis in suspension flows. Proc. (CD-ROM) 28th IAHR congr.

Clarke, B., Otto, F., Stuart-Smith, R. Harrington, L., 2022. Extreme weather impacts of climate change: an attribution perspective. Environmental Research: Climate, 1(1), p.012001.

Chiew, Y.M., Melville, B.W., 1987. Local scour around bridge piers. Journal of Hydraulic Research, 25(1), 15-26. https://doi.org/10.1080/00221688709499285

Corino, E.R., Brodkey, R.S., 1969. A visual investigation of the wall region in turbulent flow. Journal of Fluid Mechanics 37(1), 1-30. https://doi.org/10.1017/S0022112069000395

Esfahani, F.S., Keshavarzi, A., 2011. Effect of different meander curvatures on spatial variation of coherent turbulent flow structure inside ingoing multi-bend river meanders. Stochastic environmental research and risk assessment 25(7), 913-928. https://doi.org/10.1007/s00477-011-0506-4

Esfahani, F.S., Keshavarzi, A., 2013. Dynamic mechanism of turbulent flow in meandering channels: considerations for deflection angle. Stochastic Environmental Research and Risk Assessment 27(5), 1093-1114. https://doi.org/10.1007/s00477-012-0647-0

Ettema, R., Melville, B.W., Barkdoll, B., 1998. Scale effect in pier-scour experiments. Journal of Hydraulic Engineering 124(6), pp.639-642.

Grass, A.J. 1971. Structural features of turbulent flow over smooth and rough boundaries. Journal of Fluid Mechanics 50(2), 233-255. https://doi.org/10.1017/S0022112071002556

Guan, D., Chiew, Y.M., Wei, M., Hsieh, S. C. 2019. Characterization of horseshoe vortex in a developing scour hole at a cylindrical bridge pier. International Journal of Sediment Research 34(2), 118-124. https://doi.org/10.1016/j.ijsrc.2018.07.001

Huai, W.X., Zhang, J., Wang, W.J., Katul, G.G., 2019. Turbulence structure in open channel flow with partially covered artificial emergent vegetation. Journal of Hydrology 573, pp.180-193. https://doi.org/10.1016/j.jhydrol.2019.03.071

Kabiri, F., Tabatabai, M.R.M., Shayannejad, M., 2022. Effect of vegetative bed on flow structure through a pool-riffle morphology. Flow Measurement and Instrumentation, 102197. https://doi.org/10.1016/j.flowmeasinst.2022.102197

Kazem, M., Afzalimehr, H., Sui, J., 2021a. Characteristics of turbulence in the downstream region of a vegetation patch. Water 13(23), 3468. https://doi.org/10.3390/w13233468

Kazem, M., Afzalimehr, H., Sui, J., 2021b. Formation of coherent flow structures beyond vegetation patches in channel. Water 13(20), 2812. https://doi.org/10.3390/w13202812

Keshavarzi, A., Melville, B., Ball, J., 2014. Three-dimensional analysis of coherent turbulent flow structure around a single circular bridge pier. Environmental Fluid Mechanics 14(4), 821-847. https://doi.org/10.1007/s10652-013-9332-1

Kline, S.J., Reynolds, W.C., Schraub, F.A., Runstadler, P.W., 1967. The structure of turbulent boundary layers. Journal of Fluid Mechanics 30(4), 741-773. https://doi.org/10.1017/S0022112067001740

Kim, H., Kline, S.J., Reynolds, W.C., 1971. The production of turbulence near a smooth wall in a turbulent boundary layer. Journal of Fluid Mechanics 50(1), 133-160. https://doi.org/10.1017/S0022112071002490

Laursen, E.M., 1963. An analysis of relief bridge scour. Journal of the Hydraulics Division 89(3), 93-118. https://doi.org/10.1061/JYCEAJ.0000896

Liu, X., Bai, Y., 2013. Three-dimensional bursting phenomena in meander channel. Transactions of Tianjin University 19(1), 17-24. https://doi.org/10.1007/s12209-013-2073-x

Lu, S.S., Willmarth, W.W., 1973. Measurements of the structure of the Reynolds stress in a turbulent boundary layer. Journal of Fluid Mechanics 60(3), 481-511. https://doi.org/10.1017/S0022112073000315

Mayaud, J.R., Wiggs, G.F., Bailey, R.M., 2016. Dynamics of skimming flow in the wake of a vegetation patch. Aeolian Research 22, 141-151. https://doi.org/10.1016/j.aeolia.2016.08.001

McGlinchey, D., 2009. Characterisation of bulk solids. John Wiley and Sons.

Miyab, N.M., Fazloula, R., Heidarpour, M., Kavian, A., Rodrigo-Comino, J., 2022. Experimental design of nature-based-solution considering the interactions between submerged vegetation and pile group on the structure of the river flow on sand beds. Water 14(15), 2382. https://doi.org/10.3390/w14152382

Mohammadzade, N., Afzalimehr, H., Singh, V.P., 2015. Experimental investigation of influence of vegetation on flow turbulence. International Journal of Hydraulic Engineering 4(3), 54-69. https://doi.org/10.5923/j.ijhe.20150403.02

Nortek, A.S., 2004. VECTRINO velocimeter user guide (Rev. C). AS Nortek: Carlsbad, CA, USA.

Ortiz, A.C., Ashton, A., Nepf, H., 2013. Mean and turbulent velocity fields near rigid and flexible plants and the implications for deposition. Journal of Geophysical Research: Earth Surface 118(4), 2585-2599. https://doi.org/10.1002/2013JF002858

Pickering, E., Rigas, G., Schmidt, O.T., Sipp, D., Colonius, T., 2021. Optimal eddy viscosity for resolvent-based models of coherent structures in turbulent jets. Journal of Fluid Mechanics 917. https://doi.org/10.1017/jfm.2021.232

Pope, S.B., 2000. Turbulent flows. Cambridge University Press.

Przyborowski, Ł., Łoboda, A.M., Bialik, R.J., 2019. Effect of two distinct patches of Myriophyllum species on downstream turbulence in a natural river. Acta Geophysica 67(3), 987-997. https://doi.org/10.1007/s11600-019-00292-4

Raudkivi, A.J., Ettema, R. 1983. Clear-water scour at cylindrical piers. Journal of Hydraulic Engineering 109(3), 338-350. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:3(338)

Rossi, M.J., Ares, J.O., Jobbágy, E.G., Vivoni, E.R., Vervoort, R.W., Schreiner-McGraw, A.P., Saco, P.M., 2018. Vegetation and terrain drivers of infiltration depth along a semiarid hillslope. Science of the Total Environment 644, 1399-1408. https://doi.org/10.1016/j.scitotenv.2018.07.052

Short, F.T., Kosten, S., Morgan, P.A., Malone, S., Moore, G E., 2016. Impacts of climate change on submerged and emergent wetland plants. Aquatic Botany 135, 3-17. https://doi.org/10.1016/j.aquabot.2016.06.006

Shahriar, A.R., Ortiz, A.C., Montoya, B.M., Gabr, M.A., 2021. Bridge Pier Scour: An overview of factors affecting the phenomenon and comparative evaluation of selected models. Transportation Geotechnics 28, 100549. https://doi.org/10.1016/j.trgeo.2021.100549

Sterk, G., Jacobs, A. F .G., Van Boxel, J.H., 1998. The effect of turbulent flow structures on saltation sand transport in the atmospheric boundary layer. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Group 23(10), 877-887. https://doi.org/10.1002/(SICI)1096-9837(199810)23:10%3C877::AID-ESP905 %3E3.0.CO;2-R

Termini, D., 2015. Experimental analysis of horizontal turbulence of flow over flat and deformed beds. Archives of Hydro-Engineering and Environmental Mechanics 62(3-4), 77-99. https://doi.org/10.1515/heem-2015-0021

Tempest, J.A., Möller, I., Spencer, T., 2015. A review of plant‐flow interactions on salt marshes: The importance of vegetation structure and plant mechanical characteristics. Wiley Interdisciplinary Reviews: Water 2(6), 669-681.

Vijayasree, B.A., Eldho, T.I., Mazumder, B.S., 2020. Turbulence statistics of flow causing scour around circular and oblong piers. Journal of Hydraulic Research, 58(4), 673-686. https://doi.org/10.1080/00221686.2019.1661292

Vonkeman, J.K., Basson, G.R., 2019. Evaluation of empirical equations to predict bridge pier scour in a non-cohesive bed under clear-water conditions. Journal of the South African Institution of Civil Engineering 61(2), 2-20.

Zaid, M., Yazdanfar, Z., Chowdhury, H., Alam, F., 2019. A review on the methods used to reduce the scouring effect of bridge pier. Energy Procedia 160, 45-50.

Zong, L., Nepf, H. 2010. Flow and deposition in and around a finite patch of vegetation. Geomorphology 116(3-4), 363-372. https://doi.org/10.1016/j.geomorph.2009.11.020

Downloads

Published

22-11-2023

How to Cite

1.
Mohammadzade Miyab N, Fazloula R, Heidarpour M, Kavian A, Rodrigo-Comino J. Surveying three-dimensional perspectives of the flow structure around the bridge pile depending on the vegetation pattern distribution. CIG [Internet]. 2023 Nov. 22 [cited 2024 Apr. 29];49(2):101-18. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/5778