Simulaciones numéricas de la evolución reciente y futura del glaciar Monte Perdido
DOI:
https://doi.org/10.18172/cig.5816Palabras clave:
Glaciar de montaña, OGGM, observaciones superficiales in-situ, cambio climáticoResumen
Los glaciares están retrocediendo globalmente debido al cambio climático, y la cordillera de los Pirineos no es una excepción. Este estudio utiliza el modelo Open Global Glacier (OGGM) para explorar la dinámica del glaciar Monte Perdido, uno de los glaciares actuales de mayor tamaño de los Pirineos. Se exploran tres enfoques de calibración para evaluar sus rendimientos al reproducir las disminuciones de volumen observadas. El primer enfoque consistió en calibrar el balance de masas utilizando datos de escaneo láser terrestre de 2011 a 2022 y datos climáticos de una estación meteorológica cercana. El segundo enfoque utilizó la calibración de escaneo láser terrestre con datos climáticos predeterminados proporcionados por OGGM (GSWP3-W5E5). El tercer enfoque manejó la calibración geodésica predeterminada del balance de masas y los datos climáticos predeterminados. Al comparar estas estrategias de calibración y analizar los datos históricos (escaneo láser terrestre y radar de penetración en el suelo), se obtiene información sobre la aplicabilidad del OGGM a este pequeño glaciar pirenaico. Se considera que el primer método de calibración es el más eficaz, haciendo hincapié en la importancia de seleccionar los datos climáticos y los métodos de calibración adecuados. Además, se realizaron proyecciones de volumen futuras utilizando un conjunto de modelos de circulación general (GCMs) bajo los escenarios RCP2.6 y RCP8.5. Los resultados indican una disminución potencial en el volumen total de hielo que va del 91,60% al 95,16% para 2100, dependiendo del escenario. En general, este estudio contribuye a la comprensión del comportamiento del glaciar Monte Perdido y su respuesta al cambio climático a través de la calibración del OGGM, al tiempo que proporciona la primera estimación de su futura fusión bajo diferentes escenarios de emisión.
Descargas
Citas
Alonso-González, E., Aalstad, K., Baba, M.W., Revuelto, J., López-Moreno, J.I., Fiddes, J., Essery, R., Gascoin, S., 2022. The Multiple Snow Data Assimilation System (MuSA v1.0). Geoscientific Model Development 15, 9127–9155. https://doi.org/10.5194/gmd-15-9127-2022 DOI: https://doi.org/10.5194/gmd-15-9127-2022
Arora, V.K., Scinocca, J.F., Boer, G.J., Christian, J.R., Denman, K.L., Flato, G.M., Kharin, V. V, Lee, W.G., Merryfield, W.J., 2011. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophysical Research Letters 38 (5). https://doi.org/10.1029/2010GL046270 DOI: https://doi.org/10.1029/2010GL046270
Belart, J. M. C., 2018. Mass balance of Icelandic glaciers in variable climate. (Ph.D. thesis). University of Iceland; University of Toulouse III, Paul Sabatier.
Beniston, M., 2003. Climatic Change in Mountain Regions: A Review of Possible Impacts. Climatic Change 59, 5–31. https://doi.org/10.1023/A:1024458411589 DOI: https://doi.org/10.1007/978-94-015-1252-7_2
Bentsen, M., Bethke, I., Debernard, J.B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I.A., Hoose, C., Kristjánsson, J.E., 2013. The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate. Geoscientific Model Development 6 (3), 687–720. https://doi.org/10.5194/gmd-6-687-2013 DOI: https://doi.org/10.5194/gmd-6-687-2013
Bolibar, J., Sapienza, F., Maussion, F., Lguensat, R., Wouters, B., Pérez, F., 2023. Universal Differential Equations for glacier ice flow modelling. Geoscientific Model Development Discussions 16 (22), 6671-6687. https://doi.org/10.5194/gmd-16-6671-2023 DOI: https://doi.org/10.5194/gmd-16-6671-2023
Braithwaite, R.J., Zhang, Y., 2000. Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model. Journal of Glaciology 46, 7–14. https://doi.org/10.3189/172756500781833511 DOI: https://doi.org/10.3189/172756500781833511
Campos, N., Alcalá-Reygosa, J., Watson, S.C., Kougkoulos, I., Quesada-Román, A., Grima, N., 2021. Modeling the retreat of the Aneto Glacier (Spanish Pyrenees) since the Little Ice Age, and its accelerated shrinkage over recent decades. The Holocene 31, 1315–1326. https://doi.org/10.1177/09596836211011678 DOI: https://doi.org/10.1177/09596836211011678
Centro Nacional de Información Geográfica (CNIG), 2023. Organismo Autónomo Centro Nacional de Información Geográfica (CNIG). http://www.cnig.es
Chueca Cía, J., Julián Andrés, A., Saz Sánchez, M.A., Creus Novau, J., López Moreno, J.I., 2005. Responses to climatic changes since the Little Ice Age on Maladeta Glacier (Central Pyrenees). Geomorphology 68, 167–182. https://doi.org/10.1016/j.geomorph.2004.11.012 DOI: https://doi.org/10.1016/j.geomorph.2004.11.012
Cucchi, M., Weedon, G.P., Amici, A., Bellouin, N., Lange, S., Müller Schmied, H., Hersbach, H., Buontempo, C., 2020. WFDE5: bias-adjusted ERA5 reanalysis data for impact studies. Earth System Science Data 12, 2097–2120. https://doi.org/10.5194/essd-12-2097-2020 DOI: https://doi.org/10.5194/essd-12-2097-2020
Dirmeyer, P.A., Gao, X., Zhao, M., Guo, Z., Oki, T., Hanasaki, N., 2006. GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bulletin of the American Meteorological Society 87, 1381–1398. American Meteorological Society. https://doi.org/10.1175/BAMS-87-10-1381 DOI: https://doi.org/10.1175/BAMS-87-10-1381
Donner, L.J., Wyman, B.L., Hemler, R.S., Horowitz, L.W., Ming, Y., Zhao, M., Golaz, J.-C., Ginoux, P., Lin, S.-J., Schwarzkopf, M.D., Austin, J., Alaka, G., Cooke, W.F., Delworth, T.L., Freidenreich, S.M., Gordon, C.T., Griffies, S.M., Held, I.M., Hurlin, W.J., Klein, S.A., Knutson, T.R., Langenhorst, A.R., Lee, H.-C., Lin, Y., Magi, B.I., Malyshev, S.L., Milly, P.C.D., Naik, V., Nath, M.J., Pincus, R., Ploshay, J.J., Ramaswamy, V., Seman, C.J., Shevliakova, E., Sirutis, J.J., Stern, W.F., Stouffer, R.J., Wilson, R.J., Winton, M., Wittenberg, A.T., Zeng, F., 2011. The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3. Journal of Climate 24, 3484–3519. https://doi.org/10.1175/2011JCLI3955.1 DOI: https://doi.org/10.1175/2011JCLI3955.1
Dunne, J.P., John, J.G., Adcroft, A.J., Griffies, S.M., Hallberg, R.W., Shevliakova, E., Stouffer, R.J., Cooke, W., Dunne, K.A., Harrison, M.J., Krasting, J.P., Malyshev, S.L., Milly, P.C.D., Phillipps, P.J., Sentman, L.T., Samuels, B.L., Spelman, M.J., Winton, M., Wittenberg, A.T., Zadeh, N., 2012. GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics. Journal of Climate 25, 6646–6665. https://doi.org/10.1175/JCLI-D-11-00560.1 DOI: https://doi.org/10.1175/JCLI-D-11-00560.1
Eis, J., 2020. Reconstructing glacier evolution using a flowline model-Development of an initialization method. University of Bremen.
Farinotti, D., Huss, M., Bauder, A., Funk, M., Truffer, M., 2009. A method to estimate the ice volume and ice-thickness distribution of alpine glaciers. Journal of Glaciology 55, 422–430. https://doi.org/10.3189/002214309788816759 DOI: https://doi.org/10.3189/002214309788816759
García-López, E., Moreno, A., Bartolomé, M., Leunda, M., Sancho, C., Cid, C., 2021. Glacial Ice Age Shapes Microbiome Composition in a Receding Southern European Glacier. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.714537 DOI: https://doi.org/10.3389/fmicb.2021.714537
Gent, P.R., Danabasoglu, G., Donner, L.J., Holland, M.M., Hunke, E.C., Jayne, S.R., Lawrence, D.M., Neale, R.B., Rasch, P.J., Vertenstein, M., Worley, P.H., Yang, Z.-L., Zhang, M., 2011. The Community Climate System Model Version 4. Journal of Climate 24, 4973–4991. https://doi.org/10.1175/2011JCLI4083.1 DOI: https://doi.org/10.1175/2011JCLI4083.1
Grunewald, K., Scheithauer, J., 2010. Europe’s southernmost glaciers: response and adaptation to climate change. Journal of Glaciology 56, 129–142. https://doi.org/10.3189/002214310791190947 DOI: https://doi.org/10.3189/002214310791190947
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J.-N., 2023. ERA5 monthly averaged data on single levels from 1940 to present. https://doi.org/10.24381/cds.f17050d7
Hock, R., 2003. Temperature index melt modelling in mountain areas. Journal of Hydrology 282, 104–115. https://doi.org/10.1016/S0022-1694(03)00257-9 DOI: https://doi.org/10.1016/S0022-1694(03)00257-9
Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F., Dufresne, J.-L., Fairhead, L., Filiberti, M.-A., Friedlingstein, P., Grandpeix, J.-Y., Krinner, G., LeVan, P., Li, Z.-X., Lott, F., 2006. The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dynamics 27, 787–813. https://doi.org/10.1007/s00382-006-0158-0 DOI: https://doi.org/10.1007/s00382-006-0158-0
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L., Farinotti, D., Huss, M., Dussaillant, I., Brun, F., Kääb, A., 2021. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731. https://doi.org/10.1038/s41586-021-03436-z DOI: https://doi.org/10.1038/s41586-021-03436-z
Huston, A., Siler, N., Roe, G.H., Pettit, E., Steiger, N.J., 2021. Understanding drivers of glacier-length variability over the last millennium. The Cryosphere 15, 1645–1662. https://doi.org/10.5194/tc-15-1645-2021 DOI: https://doi.org/10.5194/tc-15-1645-2021
Huybers, K., Roe, G.H., 2009. Spatial Patterns of Glaciers in Response to Spatial Patterns in Regional Climate. Journal of Climate 22, 4606–4620. https://doi.org/10.1175/2009JCLI2857.1 DOI: https://doi.org/10.1175/2009JCLI2857.1
IPCC, 2021. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change.
Julián, A., Chueca, J., 2007. Pérdidas de extensión y volumen en los glaciares del macizo de Monte Perdido (Pirineo central español): 1981–1999. Boletín Glaciológico Aragonés 8, 31–60.
Khadka, M., Kayastha, R.B., Kayastha, R., 2020. Future projection of cryospheric and hydrologic regimes in Koshi River basin, Central Himalaya, using coupled glacier dynamics and glacio-hydrological models. Journal of Glaciology 66, 831–845. https://doi.org/10.1017/jog.2020.51 DOI: https://doi.org/10.1017/jog.2020.51
Kienholz, C., Rich, J.L., Arendt, A.A., Hock, R, 2014. A new method for deriving glacier centerlines applied to glaciers in Alaska and northwest Canada. The Cryosphere 8, 503–519. https://doi.org/10.5194/tc-8-503-2014 DOI: https://doi.org/10.5194/tc-8-503-2014
Kim, H., Watanabe, S., Chang, E.C., Yoshimura, K., Hirabayashi, J., Famiglietti, J., Oki, T., 2017. Global Soil Wetness Project Phase 3 Atmospheric Boundary Conditions (Experiment 1) [Data set], Data Integration and Analysis System (DIAS).
Lange, S., 2019. WFDE5 over land merged with ERA5 over the ocean (W5E5). V. 1.0. GFZ Data Services.
Lange, S., Büchner, M., 2020. ISIMIP2a atmospheric climate input data. ISIMIP Repository. https://data.isimip.org/10.48364/ISIMIP.886955
López-Moreno, J.I., Revuelto, J., Rico, I., Chueca-Cía, J., Julián, A., Serreta, A., Serrano, E., Vicente-Serrano, S.M., Azorin-Molina, C., Alonso-González, E., García-Ruiz, J.M., 2016. Thinning of the Monte Perdido Glacier in the Spanish Pyrenees since 1981. The Cryosphere 10, 681–694. https://doi.org/10.5194/tc-10-681-2016 DOI: https://doi.org/10.5194/tc-10-681-2016
López-Moreno, J.I., Alonso-González, E., Monserrat, O., Río, L.M. Del, Otero, J., Lapazaran, J., Luzi, G., Dematteis, N., Serreta, A., Rico, I., Serrano-Cañadas, E., Bartolomé, M., Moreno, A., Buisan, S., Revuelto, J., 2019. Ground-based remote-sensing techniques for diagnosis of the current state and recent evolution of the Monte Perdido Glacier, Spanish Pyrenees. Journal of Glaciology 65, 85–100. https://doi.org/10.1017/jog.2018.96 DOI: https://doi.org/10.1017/jog.2018.96
López-Moreno, J.I., García-Ruiz, J.M., Vicente-Serrano, S.M., Alonso-González, E., Revuelto-Benedí, J., Rico, I., Izagirre, E., Beguería-Portugués, S., 2020. Critical discussion of: “A farewell to glaciers: Ecosystem services loss in the Spanish Pyrenees”. Journal of Environmental Management 275, 111247. https://doi.org/10.1016/j.jenvman.2020.111247 DOI: https://doi.org/10.1016/j.jenvman.2020.111247
Ma, L., Tian, L., Pu, J., Wang, P., 2010. Recent area and ice volume change of Kangwure Glacier in the middle of Himalayas. Chinese Science Bulletin 55, 2088–2096. https://doi.org/10.1007/s11434-010-3211-7 DOI: https://doi.org/10.1007/s11434-010-3211-7
Maussion, F., Butenko, A., Champollion, N., Dusch, M., Eis, J., Fourteau, K., Gregor, P., Jarosch, A.H., Landmann, J., Oesterle, F., Recinos, B., Rothenpieler, T., Vlug, A., Wild, C.T., Marzeion, B., 2019. The Open Global Glacier Model (OGGM) v1.1. Geoscientific Model Development 2019, 909–931. https://doi.org/10.5194/gmd-12-909-2019 DOI: https://doi.org/10.5194/gmd-12-909-2019
Maussion, F., Rothenpieler, T., Dusch, M., Schmitt, P., Vlug, A., Schuster, L., Champollion, N., Li, F., Marzeion, B., Oberrauch, M., Eis, J., Landmann, J., Jarosch, A., Fischer, A., luzpaz, Hanus, S., Rounce, D., Castellani, M., Bartholomew, S.L., Minallah, S., bowenbelongstonature, Merrill, C., Otto, D., Loibl, D., Ultee, L., Thompson, S., anton-ub, Gregor, P., zhaohongyu, 2023. OGGM/oggm: v1.6.0. Zenodo. https://doi.org/10.5281/zenodo.7718476
Miller, R.L., Schmidt, G.A., Nazarenko, L.S., Tausnev, N., Bauer, S.E., DelGenio, A.D., Kelley, M., Lo, K.K., Ruedy, R., Shindell, D.T., Aleinov, I., Bauer, M., Bleck, R., Canuto, V., Chen, Y., Cheng, Y., Clune, T.L., Faluvegi, G., Hansen, J.E., Healy, R.J., Kiang, N.Y., Koch, D., Lacis, A.A., LeGrande, A.N., Lerner, J., Menon, S., Oinas, V., García-Pando, C.P., Perlwitz, J.P., Puma, M.J., Rind, D., Romanou, A., Russell, G.L., Sato, M., Sun, S., Tsigaridis, K., Unger, N., Voulgarakis, A., Yao, M.-S., Zhang, J., 2014. CMIP5 historical simulations (1850-2012) with GISS ModelE2. Journal of Advances in Modeling Earth Systems 6, 441–478. https://doi.org/10.1002/2013MS000266 DOI: https://doi.org/10.1002/2013MS000266
Moreno, A., Bartolomé, M., López-Moreno, J.I., Pey, J., Corella, J.P., García-Orellana, J., Sancho, C., Leunda, M., Gil-Romera, G., González-Sampériz, P., Pérez-Mejías, C., Navarro, F., Otero-García, J., Lapazaran, J., Alonso-González, E., Cid, C., López-Martínez, J., Oliva-Urcia, B., Faria, S.H., Sierra, M.J., Millán, R., Querol, X., Alastuey, A., García-Ruíz, J.M., 2021. The case of a southern European glacier which survived Roman and medieval warm periods but is disappearing under recent warming. The Cryosphere 15, 1157–1172. https://doi.org/10.5194/tc-15-1157-2021 DOI: https://doi.org/10.5194/tc-15-1157-2021
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., Zhang, H., 2013. Anthropogenic and natural radiative forcing. P. in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 659–740 pp. DOI: https://doi.org/10.1017/CBO9781107415324.018
Paterson, W.S.B., 2000. Physics of glaciers. P. in.: Butterworth-Heinemann.
Revuelto, J., López-Moreno, J.I., Azorin-Molina, C., Zabalza, J., Arguedas, G., Vicente-Serrano, S.M., 2014. Mapping the annual evolution of snow depth in a small catchment in the Pyrenees using the long-range terrestrial laser scanning. Journal of Maps 10, 379–393. https://doi.org/10.1080/17445647.2013.869268 DOI: https://doi.org/10.1080/17445647.2013.869268
Revuelto, J., Jiménez, J.G., Rojas-Heredia, F., Vidaller, I., Deschamps-Berger, C., Izagirre, E., Voordendag, A., López-Moreno, J.I., 2022. Geometric features of mountain glaciers from 3D point clouds to delimit their extent: insight from gradient boosting trees algorithms. Pp. C55A–01 in: AGU Fall Meeting Abstracts.
Rico, I., Izagirre, E., Serrano, E., López-Moreno, J.I., 2017. Superficie glaciar actual en los Pirineos: Una actualización para 2016. Pirineos 172, 29. https://doi.org/10.3989/Pirineos.2017.172004 DOI: https://doi.org/10.3989/Pirineos.2017.172004
Rotstayn, L.D., Collier, M.A., Dix, M.R., Feng, Y., Gordon, H.B., O’Farrell, S.P., Smith, I.N., Syktus, J., 2009. Improved simulation of Australian climate and ENSO-related rainfall variability in a global climate model with an interactive aerosol treatment. International Journal of Climatology 30 (7), 1067-1088. https://doi.org/10.1002/joc.1952 DOI: https://doi.org/10.1002/joc.1952
Schuster, L., Rounce, D.R., Maussion, F., 2023. Glacier projections sensitivity to temperature-index model choices and calibration strategies. Annals of Glaciology. https://doi.org/10.1017/aog.2023.57 DOI: https://doi.org/10.31223/X5C65S
Serrano Cañadas, E., 2023. Glaciares, cultura y patrimonio La huella cultural de los glaciares pirenaicos. Universidad de Valladolid.
Taylor, K.E., Stouffer, R.J., Meehl, G.A., 2012. An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society 93, 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1 DOI: https://doi.org/10.1175/BAMS-D-11-00094.1
Van der Laan, L.N., Cholibois, K., El Menuawy, A., Förster, K., 2022. A Scenario-Neutral Approach to Climate Change in Glacier Mass Balance Modelling. Annals of Glaciology. https://doi.org/10.31223/X51H18 DOI: https://doi.org/10.31223/X51H18
Van der Veen, C.J., 2013. Fundamentals of Glacier Dynamics. CRC Press. DOI: https://doi.org/10.1201/b14059
Vidaller, I., Revuelto, J., Izagirre, E., Rojas‐Heredia, F., Alonso‐González, E., Gascoin, S., René, P., Berthier, E., Rico, I., Moreno, A., Serrano, E., Serreta, A., López‐Moreno, J.I., 2021. Toward an Ice‐Free Mountain Range: Demise of Pyrenean Glaciers During 2011–2020. Geophysical Research Letters, 48 (18). https://doi.org/10.1029/2021GL094339 DOI: https://doi.org/10.1029/2021GL094339
Vlug, A., 2021. The influence of climate variability on the mass balance of Canadian Arctic land-terminating glaciers, in simulations of the last millennium. Universität Bremen.
Voldoire, A., Sanchez-Gomez, E., y Mélia, D.S., Decharme, B., Cassou, C., Sénési, S., Valcke, S., Beau, I., Alias, A., Chevallier, M., Déqué, M., Deshayes, J., Douville, H., Fernandez, E., Madec, G., Maisonnave, E., Moine, M.-P., Planton, S., Saint-Martin, D., Szopa, S., Tyteca, S., Alkama, R., Belamari, S., Braun, A., Coquart, L., Chauvin, F., 2013. The CNRM-CM5.1 global climate model: description and basic evaluation. Climate Dynamics, 40, 2091–2121. https://doi.org/10.1007/s00382-011-1259-y DOI: https://doi.org/10.1007/s00382-011-1259-y
Zanchettin, D., Rubino, A., Matei, D., Bothe, O., Jungclaus, J.H., 2013. Multidecadal-to-centennial SST variability in the MPI-ESM simulation ensemble for the last millennium. Climate Dynamics 40, 1301–1318. https://doi.org/10.1007/s00382-012-1361-9 DOI: https://doi.org/10.1007/s00382-012-1361-9
Zekollari, H., Huss, M., Farinotti, D., 2019. Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble. The Cryosphere 13, 1125–1146. https://doi.org/10.5194/tc-13-1125-2019 DOI: https://doi.org/10.5194/tc-13-1125-2019
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Anna Mateos-García, María Santolaria-Otín, Yolanda Sola , Esteban Alonso-González, Jaime Otero, Luis Mariano del Rio, Juan Ignacio López-Moreno, Jesús Revuelto

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El autor o autora conserva todos los derechos sobre su artículo y cede a la revista el derecho de la primera publicación, no siendo necesaria la autorización de la revista para su difusión una vez publicado. Una vez publicada la versión del editor el autor está obligado a hacer referencia a ella en las versiones archivadas en los repositorios personales o institucionales.
El artículo se publicará con una licencia Creative Commons de Atribución, que permite a terceros utilizar lo publicado siempre que se mencione la autoría del trabajo y la primera publicación en esta revista.
Se recomienda a los autores/as el archivo de la versión de editor en repositorios institucionales.