El papel de los techos verdes en la mitigación y adaptación al cambio climático

análisis de su efectividad durante eventos de lluvia extrema

Autores/as

DOI:

https://doi.org/10.18172/cig.6411

Palabras clave:

techo verde, modelo de balance hídrico, Escorrentía, eventos extremos de precipitación, especies nativas, ciudades sostenibles

Resumen

En este estudio se evaluó la capacidad de almacenamiento de agua y escorrentía de un simulador de techo verde extensivo en la ciudad de Bahía Blanca (Argentina), durante el evento de precipitación más extremo de los últimos 47 años. Para ello, se analizó la serie temporal de precipitación diaria del período 1961-2022. Se utilizó el modelo Green Roof con datos de precipitación y evapotranspiración potencial diaria y de capacidad de campo medidas in situ durante el año 2022 y se seleccionó el período más extremo en términos de precipitación. El modelo se aplicó considerando un simulador de techo verde con una superficie de 1 m2, cubierto al 50 % por especies nativas. La profundidad del sustrato fue 15 cm y la capacidad máxima de almacenamiento de agua del suelo fue 58,7 mm. Bahía Blanca presentó una marcada variabilidad de las precipitaciones a diferentes escalas temporales. Las precipitaciones más frecuentes fueron las menores de 20 mm (89 %), seguidas de las de entre 20,1 y 40 mm (8 %). Se detectaron ocho eventos entre 80,1 mm y 100 mm, entre los que destaca el de 24 de marzo de 2022 por ser el evento de mayor precipitación diaria de los últimos 15 años (90,3 mm). Sin embargo, al analizar las precipitaciones acumuladas en tres días consecutivos, se observó que la cantidad registrada durante el período 23-25 de marzo (150,3 mm) fue la más extremo de los últimos 47 años y la segunda más importante de los 62 años analizados. Durante este evento se generó una escorrentía total de 83,4 mm, lo que indica que el simulador de techo verde tuvo una buena capacidad de almacenamiento de agua, alcanzando un 44,6 %. Considerando que se prevé un aumento en la frecuencia e intensidad de eventos pluviométricos extremos, los techos verdes representan una alternativa innovadora y sostenible para mitigar y adaptarse a los efectos del cambio climático, permitiendo además gestionar la escorrentía en entornos urbanos, particularmente en regiones con eventos pluviométricos extremos frecuentes, como Bahía Blanca.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Akther, M., He, J., Chu, A., Huang, J., Van Duin, B. 2018. A review of green roof applications for managing urban stormwater in different climatic zones. Sustainability, 10(8), 2864. https://doi.org/10.3390/su10082864

Aliaga, V. S., Ferrelli, F., Piccolo, M. C. 2017. Regionalization of climate over the Argentine Pampas. International Journal of Climatology, 37(S1), 1237-1247. https://doi.org/10.1002/joc.4765

Allen, R.G., Pereira, L. S., Raes, D., Smith, M. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper, 56, FAO Rome, 300(9), D05109.

Avashia, V., Garg, A. 2020. Implications of land use transitions and climate change on local flooding in urban areas: An assessment of 42 Indian cities. Land Use Policy, 95, 104571. https://doi.org/10.1016/j.landusepol.2020.104571

Barbaro, L.A., Soto, M.S., Sisaro, D., Karlanian, M., Stancanelli, S. 2017. Sustratos para techos verdes sustentables (extensivos). Ediciones INTA.

Bekele, F., Mosisa, N., Terefe, D. 2017. Analysis of current rainfall variability and trends over Bale-Zone SouthEastern highland of Ethiopia. Climate Change, 3(12), 889-902. https://doi.org/10.4172/2157-7617.1000417

Beecham, S., Razzaghmanesh, M. 2015. Water quality and quantity investigation of green roofs in a dry climate. Water Research, 70, 370-384. https://doi.org/10.1016/j.watres.2014.12.015

Berggren, K., Olofsson, M., Viklander, M., Svensson, G., Gustafsson, A.M. 2012. Hydraulic impacts on urban drainage systems due to changes in rainfall caused by climatic change. Journal of Hydrologic Engineering, 17(1), 92-98. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000406

Berndtsson, J.C. 2010. Green roof performance towards management of runoff water quantity and quality: A review. Ecological Engineering, 36(4), 351-360. https://doi.org/10.1016/j.ecoleng.2009.12.014

Bohn, V.Y., Piccolo, M.C., Perillo, G.M.E. 2011. Análisis de los períodos secos y húmedos en el sudoeste de la provincia de Buenos Aires (Argentina). Revista de Climatología, 11, 31-44.

Brandão, C., do Rosário Cameira, M., Valente, F., de Carvalho, R.C., Paço, T.A. 2017. Wet season hydrological performance of green roofs using native species under Mediterranean climate. Ecological Engineering, 102, 596-611. https://doi.org/10.1016/j.ecoleng.2017.02.025

Brendel, A.S., Bohn, V.Y., Piccolo, M.C. 2017. Variabilidad de la precipitación y su relación con los rendimientos agrícolas en una región semiárida de la llanura pampeana (Argentina). Estudios Geográficos, 78(282), 7-29. https://doi.org/10.3989/estgeogr.201723

Brendel, A., Ferrelli, F., Piccolo, M.C., Perillo, G.M.E. 2021. Impacto de eventos pluviométricos sobre el caudal diario de un río de la región Pampeana (Argentina). Interespaço: Revista de Geografía e Interdisciplinaridade, 7(e202112), 1-22. http://doi.org/10.18764/2446-6549.e202112

Brendel, A.S. 2023. Impacto del cambio climático: Un análisis espacial del riesgo futuro al cambio climático en el sur de la Región Pampeana (Argentina). Papeles de Geografía, 69, 155-168. https://doi.org/10.6018/geografia.563951

Burszta-Adamiak, E., Mrowiec, M. 2013. Modelling of green roofs' hydrologic performance using EPA's SWMM. Water Science and Technology, 68(1), 36-42. https://doi.org/10.2166/wst.2013.238

Busker, T., de Moel, H., Haer, T., Schmeits, M., van den Hurk, B., Myers, K., ... & Aerts, J. 2022. Blue-green roofs with forecast-based operation to reduce the impact of weather extremes. Journal of Environmental Management, 301, 113750. https://doi.org/10.1016/j.jenvman.2021.113750

Butler, C., Butler, E., Orians, C. M. 2012. Native plant enthusiasm reaches new heights: Perceptions, evidence, and the future of green roofs. Urban forestry & urban greening, 11(1), 1-10. https://doi.org/10.1016/j.ufug.2011.11.002

Carter, T., Jackson, C.R. 2007. Vegetated roofs for stormwater management at multiple spatial scales. Landscape and Urban Planning, 80(1-2), 84-94. https://doi.org/10.1016/j.landurbplan.2006.06.005

Cassel, D.K., Nielsen, D.R. 1986. Chapter 36: Field Capacity and Available Water Capacity. In Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods. Soil Science Society of America. Madison, WI, USA. 2nd edition.

Driscoll, C.T., Eger, C.G., Chandler, D.G., Davidson, C.I., Roodsari, B.K., Flynn, C.D., ... & Groffman, P.M. 2015. Green infrastructure: Lessons from science and practice. A publication of the Science Policy Exchange, 32.

Ferrelli, F., Brendel, A.S., Aliaga, V.S., Piccolo, M.C., Perillo, G.M.E. 2019. Climate regionalization and trends based on daily temperature and precipitation extremes in the south of the Pampas (Argentina). Cuadernos de Investigación Geográfica: Geographical Research Letters, 45(1), 393-416. https://doi.org/10.18172/cig.3622

Ferrelli, F., Brendel, A.S., Piccolo, M.C., Perillo, G.M.E. 2021. Evaluación de la tendencia de la precipitación en la región Pampeana (Argentina) durante el período 1960-2018. Raega-O Espaço Geográfico em Análise, 51, 41-57. http://dx.doi.org/10.5380/raega.v51i0.69962

Gong, Y., Yin, D., Li, J., Zhang, X., Wang, W., Fang, X., Wang, Q. 2019. Performance assessment of extensive green roof runoff flow and quality control capacity based on pilot experiments. Science of the Total Environment, 687, 505-515. https://doi.org/10.1016/j.scitotenv.2019.06.063

Hachoumi, I., Pucher, B., Vito-Francesco, D., Prenner, F., Ertl, T., Langergraber, G., Allabashi, R. 2021. Impact of green roofs and vertical greenery systems on surface runoff quality. Water, 13(19), 2609. https://doi.org/10.3390/w13192609

Hamouz, V., Pons, V., Sivertsen, E., Raspati, G.S., Bertrand-Krajewski, J.L., Muthanna, T.M. 2020. Detention-based green roofs for stormwater management under extreme precipitation due to climate change. Blue-Green Systems, 2(1), 250-266. https://doi.org/10.2166/bgs.2020.101

Harper, G.E., Limmer, M.A., Showalter, W.E., Burken, J.G. 2015. Nine-month evaluation of runoff quality and quantity from an experiential green roof in Missouri, USA. Ecological Engineering, 78, 127-133. https://doi.org/10.1016/j.ecoleng.2014.06.013

He, Y., Yu, H., Ozaki, A., Dong, N. 2020. Thermal and energy performance of green roof and cool roof: A comparison study in Shanghai area. Journal of Cleaner Production, 267, 122205. https://doi.org/10.1016/j.jclepro.2020.122205

Intergovernmental Panel on Climate Change (IPCC). 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, et al., Eds.). Cambridge University Press. https://doi.org/10.1017/9781009157896

Leandro, J., Chen, K.F., Wood, R.R., Ludwig, R. 2020. A scalable flood-resilience-index for measuring climate change adaptation: Munich city. Water Research, 173, 115502. https://doi.org/10.1016/j.watres.2020.115502

Lee, J. Y., Lee, M. J., Han, M. 2015. A pilot study to evaluate runoff quantity from green roofs. Journal of Environmental Management, 152, 171-176. https://doi.org/10.1016/j.jenvman.2015.01.049

Li, C., Liu, M., Hu, Y., Shi, T., Qu, X. 2018. Effects of urbanization on direct runoff characteristics in urban functional zones. Science of the Total Environment, 643, 301-311. https://doi.org/10.1016/j.scitotenv.2018.06.211

Liu, W., Feng, Q., Chen, W., Wei, W., Deo, R.C. 2019. The influence of structural factors on stormwater runoff retention of extensive green roofs: New evidence from scale-based models and real experiments. Journal of Hydrology, 569, 230-238. https://doi.org/10.1016/j.jhydrol.2018.12.037

Liu, W., Feng, Q., Deo, R.C., Yao, L., Wei, W. 2020. Experimental study on the rainfall-runoff responses of typical urban surfaces and two green infrastructures using scale-based models. Environmental Management, 66(4), 683-693. https://doi.org/10.1007/s00267-020-01339-9

Liu, W., Engel, B. A., Feng, Q. 2021. Modelling the hydrological responses of green roofs under different substrate designs and rainfall characteristics using a simple water balance model. Journal of Hydrology, 602, 126786. https://doi.org/10.1016/j.jhydrol.2021.126786

Mastrandrea, A., Pérez, M.I. 2022. Representaciones sociales del riesgo hídrico: Análisis crítico del discurso periodístico en la cuenca del arroyo Napostá Grande (Bahía Blanca, Argentina). Revista Universitaria de Geografía, 31(1), 19-22. https://doi.org/10.52292/j.rug.2022.31.1.0039

Mentens, J., Raes, D., Hermy, M. 2006. Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landscape and Urban Planning, 77(3), 217-226. https://doi.org/10.1016/j.landurbplan.2005.02.010

Muthuwatta, L., Sood, A., McCartney, M., Silva, N.S., Opere, A. 2018. Understanding the impacts of climate change in the Tana River Basin, Kenya. Proceedings of the International Association of Hydrological Sciences, 379, 37-42. https://doi.org/10.5194/piahs-379-37-2018

Paço, T.A., Cruz de Carvalho, R., Arsénio, P., Martins, D. 2019. Green roof design techniques to improve water use under Mediterranean conditions. Urban science, 3(1), 14. https://doi.org/10.3390/urbansci3010014

Padhiary, J., Patra, K.C., Das, D.M., Sahoo, B.C., Singh, K.K. 2018. Prediction of climate change impact on streamflow and evapotranspiration in Baitarani basin using SWAT model. Journal of Agrometeorology, 20(4), 325-328. https://doi.org/10.54386/jam.v20i4.576

Palla, A., Gnecco, I., Laurenti, A. 2009. Hydrologic restoration in the urban environment using green roofs. Water and Environmental Journal, 23(3), 209-220. https://doi.org/10.1111/j.1747-6593.2008.00133.x

Paule-Mercado, M.A., Lee, B.Y., Memon, S.A., Umer, S.R., Salim, I., Lee, C.H. 2017. Influence of land development on stormwater runoff from a mixed land use and land cover catchment. Science of the Total Environment, 599, 2142-2155. https://doi.org/10.1016/j.scitotenv.2017.05.081

Peng, Z., Smith, C., Stovin, V. 2019. Internal fluctuations in green roof substrate moisture content during storm events: Monitored data and model simulations. Journal of Hydrology, 573, 872-884. https://doi.org/10.1016/j.jhydrol.2019.03.051

Pérez, S., Sierra, E., Momo, F., Massobrio, M. 2015. Changes in average annual precipitation in Argentina’s Pampa region and their possible causes. Climate, 3(1), 150-167. https://doi.org/10.3390/cli3010150

Perillo, V.L., Brendel, A.S., Ferrelli, F., Gutiérrez, A., Vitale, A.J., Marinangeli, P., Piccolo, M.C. 2023. CO2 flux dynamics of exotic and native species in an extensive green roof simulator with hydric deficit. Urban Climate, 49, 101567. https://doi.org/10.1016/j.uclim.2023.101567

Pour, S.H., Abd Wahab, A.K., Shahid, S., Asaduzzaman, M., Dewan, A. 2020. Low impact development techniques to mitigate the impacts of climate-change-induced urban floods: Current trends, issues and challenges. Sustainable Cities and Society, 62, 102373. https://doi.org/10.1016/j.scs.2020.102373

Raes, D., Timmerman, A., Hermy, M., Mentens, J. 2006. GreenRoof – water balance model. K.U.Leuven University Faculty of Bioscience Engineering Division of Soil and Water Management, Leuven, Belgium.

Rowe, D.B. 2011. Green roofs as a means of pollution abatement. Environmental Pollution, 159(8-9), 2100-2110. https://doi.org/10.1016/j.envpol.2010.10.029

Shafique, M., Kim, R., Rafiq, M. 2018. Green roof benefits, opportunities, and challenges–A review. Renewable and Sustainable Energy Reviews, 90, 757-773. https://doi.org/10.1016/j.rser.2018.03.060

Sims, A.W., Robinson, C.E., Smart, C.C., O'Carroll, D.M. 2019. Mechanisms controlling green roof peak flow rate attenuation. Journal of Hydrology, 577, 123972. https://doi.org/10.1016/j.jhydrol.2019.123972

Speak, A.F., Rothwell, J.J., Lindley, S.J., Smith, C.L. 2012. Urban particulate pollution reduction by four species of green roof vegetation in a UK city. Atmospheric Environment, 61, 283-293. https://doi.org/10.1016/j.atmosenv.2012.07.043

Starry, O., Lea-Cox, J., Ristvey, A., Cohan, S. 2016. Parameterizing a water-balance model for predicting stormwater runoff from green roofs. Journal of Hydrologic Engineering, 21(12), 04016046. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001451

Stovin, V., Vesuviano, G., Kasmin, H. 2012. The hydrological performance of a green roof test bed under UK climatic conditions. Journal of Hydrology, 414, 148-161. https://doi.org/10.1016/j.jhydrol.2011.10.022

Todorov, D., Driscoll, C.T., Todorova, S. 2018. Long‐term and seasonal hydrologic performance of an extensive green roof. Hydrological Processes, 32(16), 2471-2482. https://doi.org/10.1002/hyp.13155

Vanuytrecht, E., Van Mechelen, C., Van Meerbeek, K., Willems, P., Hermy, M., Raes, D. 2014. Runoff and vegetation stress of green roofs under different climate change scenarios. Landscape and Urban Planning, 122, 68-77. https://doi.org/10.1016/j.landurbplan.2013.11.001

Villarreal, E.L., Bengtsson, L. 2005. Response of a Sedum green-roof to individual rain events. Ecological Engineering, 25(1), 1-7. https://doi.org/10.1016/j.ecoleng.2004.11.008

Wong, G.K., Jim, C.Y. 2015. Identifying keystone meteorological factors of green-roof stormwater retention to inform design and planning. Landscape and Urban Planning, 143, 173-182. https://doi.org/10.1016/j.landurbplan.2015.07.010

Yin, J., Ye, M., Yin, Z., Xu, S. 2015. A review of advances in urban flood risk analysis over China. Stochastic Environmental Research and Risk Assessment, 29(3), 1063-1070. https://doi.org/10.1007/s00477-014-0939-7

Zapperi, P.A. (2014). Caracterización del escurrimiento urbano en la ciudad de Bahía Blanca. Revista Universitaria de Geografía, 23(2), 125-150.

Zhang, Y., Xia, J., Yu, J., Randall, M., Zhang, Y., Zhao, T., Shao, Q. 2018. Simulation and assessment of urbanization impacts on runoff metrics: Insights from land use changes. Journal of Hydrology, 560, 247-258. https://doi.org/10.1016/j.jhydrol.2018.03.031

Zhang, Z., Szota, C., Fletcher, T.D., Williams, N.S., Farrell, C. 2019. Green roof storage capacity can be more important than evapotranspiration for retention performance. Journal of Environmental Management, 232, 404-412. https://doi.org/10.1016/j.jenvman.2018.11.077

Zhang, S., Lin, Z., Zhang, S., Ge, D. 2021. Stormwater retention and detention performance of green roofs with different substrates: Observational data and hydrological simulations. Journal of Environmental Management, 291, 112682. https://doi.org/10.1016/j.jenvman.2021.112682

Zhou, Q., Leng, G., Su, J., Ren, Y. 2019. Comparison of urbanization and climate change impacts on urban flood volumes: Importance of urban planning and drainage adaptation. Science of the Total Environment, 658, 24-33. https://doi.org/10.1016/j.scitotenv.2018.12.184

Publicado

2025-06-13

Cómo citar

1.
Brendel AS, Ferrelli F, Garay M, Gutiérrez A, Perillo V, Piccolo MC. El papel de los techos verdes en la mitigación y adaptación al cambio climático: análisis de su efectividad durante eventos de lluvia extrema. CIG [Internet]. 13 de junio de 2025 [citado 17 de junio de 2025];. Disponible en: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/6411

Datos de los fondos