Drivers of a New Hydrological Scenario in the Chaco-Pampas Breadbasket
The Role of Climate and Vegetation Trends
DOI:
https://doi.org/10.18172/cig.6782Keywords:
NDVI, groundwater, land-use change, water-table, GIMMSAbstract
The Chaco-Pampas plain in Argentina, a key region for global food production, is experiencing a hydrological shift marked by increasing water surpluses. These surpluses are evident in rising water-table levels, increased flooding, expanded wetland and saline areas, and the formation of new rivers, all of which threaten productive systems. To investigate the causes, we analyzed long-term trends (1980-2019) in climatic variables (precipitation and reference evapotranspiration) as well as vegetation (NDVI and cropped areas) across the region, summarizing data by ecoregion unit and sub-unit and performing detailed analyses in focal zones. Our findings indicate that climatic trends do not support the generation of water surpluses. Specifically, across the region the average reference evapotranspiration increased by approximately 20 mm per decade, while precipitation remained largely unchanged except for a notable decrease (-30 mm per decade) in the Dry Chaco sub-region. In contrast, the NDVI displayed a browning trend across most of the region, suggesting a decline in the transpiration capacity of agroecosystems, largely driven by the expansion of rainfed croplands, whose area nearly tripled during the study period. At the focal sites, this browning corresponded with significant rises in water-table levels (~1 m per decade) and an intensified response to precipitation events; for a given amount of rainfall, water-tables now rise more than in previous periods. Overall, these results suggest that land cover changes have reduced ecosystem transpiration capacity, intensifying water surpluses and associated hydrological challenges, and highlight the urgent need for adaptive management strategies.
Downloads
References
Aguiar, S., Texeira, M., Garibaldi, L.A., Jobbágy, E.G., 2020. Global changes in crop diversity: trade rather than production enriches supply. Global Food Security 26, 100385. http://doi.org/10.1016/j.gfs.2020.100385 DOI: https://doi.org/10.1016/j.gfs.2020.100385
Akaike, H., 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716-723. http://doi.org/10.1109/TAC.1974.1100705 DOI: https://doi.org/10.1109/TAC.1974.1100705
Alsina, S., Nosetto, M.D., Jobbágy, E.G., 2020. Base de datos "NAPA": Primera síntesis de la dinámica freática pampeana desde 1950 al presente. Ciencia del Suelo 38, 262-273.
Allen, R.G., Pereira, L.S., Raes, D., Smith, M.D., 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. FAO, Rome.
Anyamba, A., Tucker, C.J., 2005. Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003. J. Arid Environ. 63, 596-614. http://doi.org/10.1016/j.jaridenv.2005.03.007 DOI: https://doi.org/10.1016/j.jaridenv.2005.03.007
Baldi, G., Nosetto, M.D., Aragón, R.M., Aversa, F., Paruelo, J.M., Jobbágy, E.G., 2008. Long-term Satellite NDVI Data Sets: Evaluating Their Ability to Detect Ecosystem Functional Changes in South America. Sensors 8. http://doi.org/10.3390/s8095397 DOI: https://doi.org/10.3390/s8095397
Barros, V.R., Boninsegna, J.A., Camilloni, I.A., Chidiak, M., Magrín, G.O., Rusticucci, M., 2015. Climate change in Argentina: Trends, projections, impacts and adaptation. Wiley Interdisciplinary Reviews: Climate Change 6, 151-169. http://doi.org/10.1002/wcc.316 DOI: https://doi.org/10.1002/wcc.316
Cano, D., Cacciuttolo, C., Custodio, M., Nosetto, M., 2023. Effects of Grassland Afforestation on Water Yield in Basins of Uruguay: A Spatio-Temporal Analysis of Historical Trends Using Remote Sensing and Field Measurements. Land 12, 185. http://doi.org/10.3390/land12010185 DOI: https://doi.org/10.3390/land12010185
Contreras, S., Jobbágy, E.G., Villagra, P.E., Nosetto, M.D., Puigdefábregas, J., 2011. Remote sensing estimates of supplementary water consumption by arid ecosystems of central Argentina. J. Hydrol. 397, 10-22. http://doi.org/10.1016/j.jhydrol.2010.11.014 DOI: https://doi.org/10.1016/j.jhydrol.2010.11.014
Chaneton, E.J., Mazía, N., Batista, W.B., Rolhauser, A.G., Ghersa, C.M., 2012. Woody Plant Invasions in Pampa Grasslands: A Biogeographical and Community Assembly Perspective. In: Myster, R.W. (Ed.), Ecotones Between Forest and Grassland. Springer New York, New York, NY, pp. 115-144. http://doi.org/10.1007/978-1-4614-3797-0_5 DOI: https://doi.org/10.1007/978-1-4614-3797-0_5
D’Andrea, M.F., Rousseau, A.N., Bigah, Y., Gattinoni, N.N., Brodeur, J.C., 2018. Trends in reference evapotranspiration and associated climate variables over the last 30 years (1984–2014) in the Pampa region of Argentina. Theoretical and Applied Climatology. http://doi.org/10.1007/s00704-018-2565-7 DOI: https://doi.org/10.1007/s00704-018-2565-7
Di Bella, C.M., Rebella, C.M., Paruelo, J.M., 2000. Evapotranspiration estimates using NOAA AVHRR imagery in the Pampa region of Argentina. Int. J. Remote Sensing 21, 791-797. http://doi.org/10.1080/014311600210579 DOI: https://doi.org/10.1080/014311600210579
Diaz, Y.R., Jobbagy Gampel, E.G., Marchesini, V.A., 2022. Neo-humedales en las llanuras agrícolas del Chaco Seco-Espinal argentino:¿ Cómo son, dónde se originan y qué hacer con ellos? Ecología Austral 32, 821-1149. http://doi.org/10.25260/EA.22.32.3.0.1870 DOI: https://doi.org/10.25260/EA.22.32.3.0.1870
Fernández-Long, M.E., Müller, G.V., Beltrán-Przekurat, A., Scarpati, O.E., 2013. Long-term and recent changes in temperature-based agroclimatic indices in Argentina. Int. J. Climatol. 33, 1673-1686. http://doi.org/10.1002/joc.3541 DOI: https://doi.org/10.1002/joc.3541
Ferrelli, F., Brendel, A., Piccolo, M.C., Perillo, G.M.E., 2021. Evaluación de la tendencia de la precipitación en la región pampeana (Argentina) durante el período 1960-2018. RA’E GA 51, 41–57. http://doi.org/10.5380/raega.v51i0.69962 DOI: https://doi.org/10.5380/raega.v51i0.69962
Gaitán, J., Biancari, L., 2024. Nueva base de datos de precipitaciones mensuales de la República Argentina (PMRAv1), 2000-2022. Meteorológica 49. http://doi.org/10.24215/1850468Xe032 DOI: https://doi.org/10.24215/1850468Xe032
Gimenez, R., Nosetto, M.D., Mercau, J.L., Paez, R., Jobbágy, E.G., 2016. The ecohydrological imprint of deforestation in the semi-arid Chaco: Insights from the last forest relicts of a highly cultivated landscape. Hydrological Processes 30, 2603–2616. http://doi.org/10.1002/hyp.10901 DOI: https://doi.org/10.1002/hyp.10901
Gimenez, R., Schultz, W., jobbágy, E.G., Mercau, J., 2024. On farm evaluation of crop alternatives for the management of shallow water tables in the South American Dry Chaco. 21st Australian Agronomy Conference, Albany, WA, Australia.
Glenn, E.P., Huete, A.R., Nagler, P.L., Nelson, S.G., 2008. Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: What vegetation indices can and cannot tell us about the landscape. Sensors 8, 2136-2160. http://doi.org/10.3390/s8042136 DOI: https://doi.org/10.3390/s8042136
Goetz, S.J., Bunn, A.G., Fiske, G.J., Houghton, R.A., 2005. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proceedings of the National Academy of Sciences 102, 13521-13525. http://doi.org/10.1073/pnas.0506179102 DOI: https://doi.org/10.1073/pnas.0506179102
González-Roglich, M., Swenson, J.J., Villarreal, D., Jobbágy, E.G., Jackson, R.B., 2015. Woody Plant-Cover Dynamics in Argentine Savannas from the 1880s to 2000s: The Interplay of Encroachment and Agriculture Conversion at Varying Scales. Ecosystems 18, 481-492. http://doi.org/10.1007/s10021-015-9841-5 DOI: https://doi.org/10.1007/s10021-015-9841-5
Guerra, J.C., Nosetto, M., 2024. Hydrological changes in a plain basin in central Argentina following expansion of rainfed agriculture and climate change. Ecohydrology, e2679. http://doi.org/10.1002/eco.2679 DOI: https://doi.org/10.1002/eco.2679
Harris, I., Osborn, T.J., Jones, P., Lister, D., 2020. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data 7, 109. http://doi.org/10.1038/s41597-020-0453-3 DOI: https://doi.org/10.1038/s41597-020-0453-3
Houspanossian, J., Giménez, R., Baldi, G., Nosetto, M., 2016. Is aridity restricting deforestation and land uses in the South American Dry Chaco? Journal of Land Use Science 11, 369-383. http://doi.org/10.1080/1747423X.2015.1136707 DOI: https://doi.org/10.1080/1747423X.2015.1136707
Houspanossian, J., Giménez, R., Whitworth-Hulse, J.I., Nosetto, M.D., Tych, W., Atkinson, P.M., Rufino, M.C., Jobbágy, E.G., 2023. Agricultural expansion raises groundwater and increases flooding in the South American plains. Science 380, 1344-1348. http://doi.org/10.1126/science.add5462 DOI: https://doi.org/10.1126/science.add5462
Houspanossian, J., Nosetto, M., Jobbágy, E.G., 2013. Radiation budget changes with dry forest clearing in temperate Argentina. Global Change Biol. 19, 1211-1222. http://doi.org/10.1111/gcb.12121 DOI: https://doi.org/10.1111/gcb.12121
Jobbágy, E.G., Aguiar, S., Piñeiro, G., Garibaldi, L.A., 2021a. Impronta ambiental de la agricultura de granos en Argentina: revisando desafíos propios y ajenos. Ciencia Hoy 29, 55-64.
Jobbágy, E.G., Lorenzo, S., Buono, N., Páez, R., Diaz, Y., Marchesini, V., Nosetto, M.D., 2021b. Plants versus streams: Their groundwater‐mediated competition at “El Morro,” a developing catchment in the dry plains of Argentina. Hydrological Processes 35, e14188. http://doi.org/10.1002/hyp.14188 DOI: https://doi.org/10.1002/hyp.14188
Köppen, W., 1918. Klassifikation der klimate nach Temperatur, Niederschlag und Yahreslauf. Petermanns Geographische Mitteilungen 64, 193-203,243-248.
Kuppel, S., Houspanossian, J., Nosetto, M.D., Jobbágy, E.G., 2015. What does it take to flood the Pampas? Lessons from a decade of strong hydrological fluctuations. Water Resour. Res. 51, 2937-2950. http://doi.org/10.1002/2015WR016966 DOI: https://doi.org/10.1002/2015WR016966
Marchesini, V.A., Gimenez, R., Nosetto, M.D., Jobbágy, E.G., 2017. The ecohydrological transformation of Chaco Dry Forests and the risk of dryland salinity: are we following Australia’s footsteps? Ecohydrology e1822. http://doi.org/10.1002/eco.1822 DOI: https://doi.org/10.1002/eco.1822
Myneni, R.B., Keeling, C., Tucker, C.J., Asrar, G., Nemani, R.R., 1997. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698-702. http://doi.org/10.1038/386698a0 DOI: https://doi.org/10.1038/386698a0
New, M., Lister, D., Hulme, M., Makin, I., 2002. A high-resolution data set of surface climate over global land areas. Climate Res. 21, 1-25. http://doi.org/10.3354/cr021001 DOI: https://doi.org/10.3354/cr021001
Nosetto, M.D., Jobbágy, E.G., Brizuela, A.B., Jackson, R.B., 2012. The hydrologic consequences of land cover change in central Argentina. Agriculture, Ecosystems and Environment 154, 2-11. http://doi.org/10.1016/j.agee.2011.01.008 DOI: https://doi.org/10.1016/j.agee.2011.01.008
Nosetto, M.D., Jobbágy, E.G., Jackson, R.B., Sznaider, G., 2009. Reciprocal influence between crops and shallow ground water in sandy landscapes of the Inland Pampas. Field Crop Res 113, 138-148. http://doi.org/10.1016/j.fcr.2009.04.016 DOI: https://doi.org/10.1016/j.fcr.2009.04.016
Nosetto, M.D., Luna Toledo, E., Magliano, P.N., Figuerola, P., Blanco, L.J., Jobbágy, E.G., 2020. Contrasting CO2 and water vapour fluxes in dry forest and pasture sites of central Argentina. Ecohydrology 13, e2244. http://doi.org/10.1002/eco.2244 DOI: https://doi.org/10.1002/eco.2244
Nosetto, M.D., Paez, R., Ballesteros, S.I., Jobbágy, E.G., 2015. Higher water-table levels and flooding risk under grain vs. livestock production systems in the subhumid plains of the Pampas. Agriculture, Ecosystems & Environment 206, 60-70. http://doi.org/10.1016/j.agee.2015.03.009 DOI: https://doi.org/10.1016/j.agee.2015.03.009
Paruelo, J.M., Jobbágy, E.G., Sala, O.E., 2001. Current distributions of ecosystem functional types in temperate South America. Ecosystems 4, 683-698. http://doi.org/10.1007/s10021-001-0037-9 DOI: https://doi.org/10.1007/s10021-001-0037-9
Pettorelli, N., Vik, J.O., Mysterud, A., Gaillard, J.-M., Tucker, C.J., Stenseth, N.C., 2005. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20, 503-510. http://doi.org/10.1016/j.tree.2005.05.011 DOI: https://doi.org/10.1016/j.tree.2005.05.011
Pinzon, J.E., Pak, E.W., Tucker, C.J., Bhatt, U.S., Frost, G.V., Macander, M.J., 2023. Global Vegetation Greenness (NDVI) from AVHRR GIMMS-3G+, 1981-2022. ORNL Distributed Active Archive Center. http://doi.org/10.3334/ORNLDAAC/2187
R Core Team, 2014. R: A language and environment for statistical computing. MSOR connections 1.
Rifai, S.W., De Kauwe, M.G., Ukkola, A.M., Cernusak, L.A., Meir, P., Medlyn, B.E., Pitman, A.J., 2022. Thirty-eight years of CO2 fertilization has outpaced growing aridity to drive greening of Australian woody ecosystems. Biogeosciences 19, 491-515. DOI: https://doi.org/10.5194/bg-19-491-2022
Rodriguez, P., Giménez, R., Nosetto, M.D., Jobbágy, E.G., Magliano, P.N., 2020. Changes in water fluxes partition related to the replacement of native dry forests by crops in the Dry Chaco. J. Arid Environ. 183, 104281. http://doi.org/10.1016/j.jaridenv.2020.104281 DOI: https://doi.org/10.1016/j.jaridenv.2020.104281
Running, S.W., Nemani, R.R., 1988. Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates. Remote Sens. Environ. 24, 347-367. http://doi.org/10.1016/0034-4257(88)90034-X DOI: https://doi.org/10.1016/0034-4257(88)90034-X
Sadok, W., Jagadish, S.V.K., 2020. The Hidden Costs of Nighttime Warming on Yields. Trends in Plant Science 25, 644-651. http://doi.org/10.1016/j.tplants.2020.02.003 DOI: https://doi.org/10.1016/j.tplants.2020.02.003
Santoni, C.S., Jobbágy, E.G., Contreras, S., 2010. Vadose transport of water and chloride in dry forests of central Argentina: the role of land use and soil texture. Water Resour. Res. 46, W10541. http://doi.org/10.1029/2009WR008784 DOI: https://doi.org/10.1029/2009WR008784
Scheff, J., Frierson, D.M.W., 2014. Scaling Potential Evapotranspiration with Greenhouse Warming. J. Clim. 27, 1539-1558. http://doi.org/10.1175/JCLI-D-13-00233.1 DOI: https://doi.org/10.1175/JCLI-D-13-00233.1
Symeonakis, E., and Drake, N., 2004. Monitoring desertification and land degradation over sub-Saharan Africa. Int. J. Remote Sensing 25, 573-592. http://doi.org/10.1080/0143116031000095998 DOI: https://doi.org/10.1080/0143116031000095998
Viglizzo, E.F., Frank, F.C., 2006. Ecological interactions, feedbacks, thresholds and collapses in the Argentine Pampas in response to climate and farming during the last century. Quaternary International 158, 122-126. http://doi.org/10.1016/j.quaint.2006.05.022 DOI: https://doi.org/10.1016/j.quaint.2006.05.022
White, M.A., De Beurs, K.M., Didan, K., Inouye, D.W., Richardson, A.D., Jensen, O.P., O'keefe, J., Zhang, G., Nemani, R.R., Van Leeuwen, W.J.D., Brown, J.F., De Wit, A., Schaepman, M., Lin, X., Dettinger, M., Bailey, A.S., Kimball, J., Schwartz, M.D., Baldocchi, D.D., Lee, J.T., Lauenroth, W.K., 2009. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Global Change Biol. 15, 2335-2359. http://doi.org/10.1111/j.1365-2486.2009.01910.x DOI: https://doi.org/10.1111/j.1365-2486.2009.01910.x
Whitworth-Hulse, J.I., Jobbágy, E.G., Borrás, L., Alsina, S.E., Houspanossian, J., Nosetto, M.D., 2023. The expansion of rainfed grain production can generate spontaneous hydrological changes that reduce climate sensitivity. Agriculture, Ecosystems & Environment 349, 108440. http://doi.org/10.1016/j.agee.2023.108440 DOI: https://doi.org/10.1016/j.agee.2023.108440
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Simón Alsina, Esteban G. Jobbágy, Marcelo D. Nosetto

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain copyright of articles and authorize Cuadernos de Investigación Geográfica / Geographical Research Letters the first publication. They are free to share and redistribute the article without obtaining permission from the publisher as long as they give appropriate credit to the editor and the journal.
Self-archiving is allowed too. In fact, it is recommendable to deposit a PDF version of the paper in academic and/or institutional repositories.
It is recommended to include the DOI number.
This journal is licensed under a Creative Commons Attribution 4.0 International LicenseFunding data
-
Consejo Nacional de Investigaciones Científicas y Técnicas
Grant numbers PIP-363/2020 -
Agencia Nacional de Promoción Científica y Tecnológica
Grant numbers PICT-504/20




