Determinantes de un nuevo escenario hidrológico en la región agrícola Chaco-Pampeana

influencia de las tendencias climáticas y de la vegetación

Autores/as

DOI:

https://doi.org/10.18172/cig.6782

Palabras clave:

NVDI, agua subterránea, cambio de uso del suelo, nivel freático, GIMMS

Resumen

La llanura Chaco-Pampeana en Argentina, región estratégica para la producción mundial de alimentos, está experimentando un cambio hidrológico caracterizado por un aumento de los excedentes hídricos. Estos excedentes se evidencian en el ascenso de los niveles freáticos, el incremento de las inundaciones, la expansión de humedales y áreas salinas, y la formación de nuevos ríos, todos ellos procesos que amenazan los sistemas productivos. Para investigar las causas, analizamos tendencias de largo plazo (1980-2019) en variables climáticas (precipitación y evapotranspiración de referencia) y de vegetación (NDVI y superficie cultivada) en la región, resumiendo los datos por unidad y subunidad ecoregional, y realizando análisis detallados en zonas focales. Nuestros resultados muestran que las tendencias climáticas no respaldan la generación de excedentes hídricos. En particular, en toda la región la evapotranspiración de referencia promedio aumentó aproximadamente 20 mm por década, mientras que la precipitación se mantuvo en gran medida sin cambios, salvo por una disminución notable (-30 mm por década) en el subregión del Chaco Seco. En contraste, el NDVI mostró una tendencia de disminución en la mayor parte de la región, lo que sugiere una reducción en la capacidad de transpiración de los agro-ecosistemas, impulsada principalmente por la expansión de los cultivos de secano, cuya superficie casi se triplicó durante el período de estudio. En los sitios focales, esta tendencia de disminución del NDVI se correspondió con aumentos significativos en los niveles freáticos (~1 m por década) y con una respuesta más intensa a los eventos de precipitación: para una misma cantidad de lluvia, los niveles freáticos ahora ascienden más que en períodos anteriores. En conjunto, estos resultados sugieren que los cambios en la cobertura del suelo han reducido la capacidad de transpiración de los ecosistemas, intensificando los excedentes hídricos y los desafíos hidrológicos asociados, y destacan la necesidad urgente de estrategias de manejo adaptativo.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aguiar, S., Texeira, M., Garibaldi, L.A., Jobbágy, E.G., 2020. Global changes in crop diversity: trade rather than production enriches supply. Global Food Security 26, 100385. http://doi.org/10.1016/j.gfs.2020.100385 DOI: https://doi.org/10.1016/j.gfs.2020.100385

Akaike, H., 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716-723. http://doi.org/10.1109/TAC.1974.1100705 DOI: https://doi.org/10.1109/TAC.1974.1100705

Alsina, S., Nosetto, M.D., Jobbágy, E.G., 2020. Base de datos "NAPA": Primera síntesis de la dinámica freática pampeana desde 1950 al presente. Ciencia del Suelo 38, 262-273.

Allen, R.G., Pereira, L.S., Raes, D., Smith, M.D., 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. FAO, Rome.

Anyamba, A., Tucker, C.J., 2005. Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003. J. Arid Environ. 63, 596-614. http://doi.org/10.1016/j.jaridenv.2005.03.007 DOI: https://doi.org/10.1016/j.jaridenv.2005.03.007

Baldi, G., Nosetto, M.D., Aragón, R.M., Aversa, F., Paruelo, J.M., Jobbágy, E.G., 2008. Long-term Satellite NDVI Data Sets: Evaluating Their Ability to Detect Ecosystem Functional Changes in South America. Sensors 8. http://doi.org/10.3390/s8095397 DOI: https://doi.org/10.3390/s8095397

Barros, V.R., Boninsegna, J.A., Camilloni, I.A., Chidiak, M., Magrín, G.O., Rusticucci, M., 2015. Climate change in Argentina: Trends, projections, impacts and adaptation. Wiley Interdisciplinary Reviews: Climate Change 6, 151-169. http://doi.org/10.1002/wcc.316 DOI: https://doi.org/10.1002/wcc.316

Cano, D., Cacciuttolo, C., Custodio, M., Nosetto, M., 2023. Effects of Grassland Afforestation on Water Yield in Basins of Uruguay: A Spatio-Temporal Analysis of Historical Trends Using Remote Sensing and Field Measurements. Land 12, 185. http://doi.org/10.3390/land12010185 DOI: https://doi.org/10.3390/land12010185

Contreras, S., Jobbágy, E.G., Villagra, P.E., Nosetto, M.D., Puigdefábregas, J., 2011. Remote sensing estimates of supplementary water consumption by arid ecosystems of central Argentina. J. Hydrol. 397, 10-22. http://doi.org/10.1016/j.jhydrol.2010.11.014 DOI: https://doi.org/10.1016/j.jhydrol.2010.11.014

Chaneton, E.J., Mazía, N., Batista, W.B., Rolhauser, A.G., Ghersa, C.M., 2012. Woody Plant Invasions in Pampa Grasslands: A Biogeographical and Community Assembly Perspective. In: Myster, R.W. (Ed.), Ecotones Between Forest and Grassland. Springer New York, New York, NY, pp. 115-144. http://doi.org/10.1007/978-1-4614-3797-0_5 DOI: https://doi.org/10.1007/978-1-4614-3797-0_5

D’Andrea, M.F., Rousseau, A.N., Bigah, Y., Gattinoni, N.N., Brodeur, J.C., 2018. Trends in reference evapotranspiration and associated climate variables over the last 30 years (1984–2014) in the Pampa region of Argentina. Theoretical and Applied Climatology. http://doi.org/10.1007/s00704-018-2565-7 DOI: https://doi.org/10.1007/s00704-018-2565-7

Di Bella, C.M., Rebella, C.M., Paruelo, J.M., 2000. Evapotranspiration estimates using NOAA AVHRR imagery in the Pampa region of Argentina. Int. J. Remote Sensing 21, 791-797. http://doi.org/10.1080/014311600210579 DOI: https://doi.org/10.1080/014311600210579

Diaz, Y.R., Jobbagy Gampel, E.G., Marchesini, V.A., 2022. Neo-humedales en las llanuras agrícolas del Chaco Seco-Espinal argentino:¿ Cómo son, dónde se originan y qué hacer con ellos? Ecología Austral 32, 821-1149. http://doi.org/10.25260/EA.22.32.3.0.1870 DOI: https://doi.org/10.25260/EA.22.32.3.0.1870

Fernández-Long, M.E., Müller, G.V., Beltrán-Przekurat, A., Scarpati, O.E., 2013. Long-term and recent changes in temperature-based agroclimatic indices in Argentina. Int. J. Climatol. 33, 1673-1686. http://doi.org/10.1002/joc.3541 DOI: https://doi.org/10.1002/joc.3541

Ferrelli, F., Brendel, A., Piccolo, M.C., Perillo, G.M.E., 2021. Evaluación de la tendencia de la precipitación en la región pampeana (Argentina) durante el período 1960-2018. RA’E GA 51, 41–57. http://doi.org/10.5380/raega.v51i0.69962 DOI: https://doi.org/10.5380/raega.v51i0.69962

Gaitán, J., Biancari, L., 2024. Nueva base de datos de precipitaciones mensuales de la República Argentina (PMRAv1), 2000-2022. Meteorológica 49. http://doi.org/10.24215/1850468Xe032 DOI: https://doi.org/10.24215/1850468Xe032

Gimenez, R., Nosetto, M.D., Mercau, J.L., Paez, R., Jobbágy, E.G., 2016. The ecohydrological imprint of deforestation in the semi-arid Chaco: Insights from the last forest relicts of a highly cultivated landscape. Hydrological Processes 30, 2603–2616. http://doi.org/10.1002/hyp.10901 DOI: https://doi.org/10.1002/hyp.10901

Gimenez, R., Schultz, W., jobbágy, E.G., Mercau, J., 2024. On farm evaluation of crop alternatives for the management of shallow water tables in the South American Dry Chaco. 21st Australian Agronomy Conference, Albany, WA, Australia.

Glenn, E.P., Huete, A.R., Nagler, P.L., Nelson, S.G., 2008. Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: What vegetation indices can and cannot tell us about the landscape. Sensors 8, 2136-2160. http://doi.org/10.3390/s8042136 DOI: https://doi.org/10.3390/s8042136

Goetz, S.J., Bunn, A.G., Fiske, G.J., Houghton, R.A., 2005. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proceedings of the National Academy of Sciences 102, 13521-13525. http://doi.org/10.1073/pnas.0506179102 DOI: https://doi.org/10.1073/pnas.0506179102

González-Roglich, M., Swenson, J.J., Villarreal, D., Jobbágy, E.G., Jackson, R.B., 2015. Woody Plant-Cover Dynamics in Argentine Savannas from the 1880s to 2000s: The Interplay of Encroachment and Agriculture Conversion at Varying Scales. Ecosystems 18, 481-492. http://doi.org/10.1007/s10021-015-9841-5 DOI: https://doi.org/10.1007/s10021-015-9841-5

Guerra, J.C., Nosetto, M., 2024. Hydrological changes in a plain basin in central Argentina following expansion of rainfed agriculture and climate change. Ecohydrology, e2679. http://doi.org/10.1002/eco.2679 DOI: https://doi.org/10.1002/eco.2679

Harris, I., Osborn, T.J., Jones, P., Lister, D., 2020. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data 7, 109. http://doi.org/10.1038/s41597-020-0453-3 DOI: https://doi.org/10.1038/s41597-020-0453-3

Houspanossian, J., Giménez, R., Baldi, G., Nosetto, M., 2016. Is aridity restricting deforestation and land uses in the South American Dry Chaco? Journal of Land Use Science 11, 369-383. http://doi.org/10.1080/1747423X.2015.1136707 DOI: https://doi.org/10.1080/1747423X.2015.1136707

Houspanossian, J., Giménez, R., Whitworth-Hulse, J.I., Nosetto, M.D., Tych, W., Atkinson, P.M., Rufino, M.C., Jobbágy, E.G., 2023. Agricultural expansion raises groundwater and increases flooding in the South American plains. Science 380, 1344-1348. http://doi.org/10.1126/science.add5462 DOI: https://doi.org/10.1126/science.add5462

Houspanossian, J., Nosetto, M., Jobbágy, E.G., 2013. Radiation budget changes with dry forest clearing in temperate Argentina. Global Change Biol. 19, 1211-1222. http://doi.org/10.1111/gcb.12121 DOI: https://doi.org/10.1111/gcb.12121

Jobbágy, E.G., Aguiar, S., Piñeiro, G., Garibaldi, L.A., 2021a. Impronta ambiental de la agricultura de granos en Argentina: revisando desafíos propios y ajenos. Ciencia Hoy 29, 55-64.

Jobbágy, E.G., Lorenzo, S., Buono, N., Páez, R., Diaz, Y., Marchesini, V., Nosetto, M.D., 2021b. Plants versus streams: Their groundwater‐mediated competition at “El Morro,” a developing catchment in the dry plains of Argentina. Hydrological Processes 35, e14188. http://doi.org/10.1002/hyp.14188 DOI: https://doi.org/10.1002/hyp.14188

Köppen, W., 1918. Klassifikation der klimate nach Temperatur, Niederschlag und Yahreslauf. Petermanns Geographische Mitteilungen 64, 193-203,243-248.

Kuppel, S., Houspanossian, J., Nosetto, M.D., Jobbágy, E.G., 2015. What does it take to flood the Pampas? Lessons from a decade of strong hydrological fluctuations. Water Resour. Res. 51, 2937-2950. http://doi.org/10.1002/2015WR016966 DOI: https://doi.org/10.1002/2015WR016966

Marchesini, V.A., Gimenez, R., Nosetto, M.D., Jobbágy, E.G., 2017. The ecohydrological transformation of Chaco Dry Forests and the risk of dryland salinity: are we following Australia’s footsteps? Ecohydrology e1822. http://doi.org/10.1002/eco.1822 DOI: https://doi.org/10.1002/eco.1822

Myneni, R.B., Keeling, C., Tucker, C.J., Asrar, G., Nemani, R.R., 1997. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698-702. http://doi.org/10.1038/386698a0 DOI: https://doi.org/10.1038/386698a0

New, M., Lister, D., Hulme, M., Makin, I., 2002. A high-resolution data set of surface climate over global land areas. Climate Res. 21, 1-25. http://doi.org/10.3354/cr021001 DOI: https://doi.org/10.3354/cr021001

Nosetto, M.D., Jobbágy, E.G., Brizuela, A.B., Jackson, R.B., 2012. The hydrologic consequences of land cover change in central Argentina. Agriculture, Ecosystems and Environment 154, 2-11. http://doi.org/10.1016/j.agee.2011.01.008 DOI: https://doi.org/10.1016/j.agee.2011.01.008

Nosetto, M.D., Jobbágy, E.G., Jackson, R.B., Sznaider, G., 2009. Reciprocal influence between crops and shallow ground water in sandy landscapes of the Inland Pampas. Field Crop Res 113, 138-148. http://doi.org/10.1016/j.fcr.2009.04.016 DOI: https://doi.org/10.1016/j.fcr.2009.04.016

Nosetto, M.D., Luna Toledo, E., Magliano, P.N., Figuerola, P., Blanco, L.J., Jobbágy, E.G., 2020. Contrasting CO2 and water vapour fluxes in dry forest and pasture sites of central Argentina. Ecohydrology 13, e2244. http://doi.org/10.1002/eco.2244 DOI: https://doi.org/10.1002/eco.2244

Nosetto, M.D., Paez, R., Ballesteros, S.I., Jobbágy, E.G., 2015. Higher water-table levels and flooding risk under grain vs. livestock production systems in the subhumid plains of the Pampas. Agriculture, Ecosystems & Environment 206, 60-70. http://doi.org/10.1016/j.agee.2015.03.009 DOI: https://doi.org/10.1016/j.agee.2015.03.009

Paruelo, J.M., Jobbágy, E.G., Sala, O.E., 2001. Current distributions of ecosystem functional types in temperate South America. Ecosystems 4, 683-698. http://doi.org/10.1007/s10021-001-0037-9 DOI: https://doi.org/10.1007/s10021-001-0037-9

Pettorelli, N., Vik, J.O., Mysterud, A., Gaillard, J.-M., Tucker, C.J., Stenseth, N.C., 2005. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20, 503-510. http://doi.org/10.1016/j.tree.2005.05.011 DOI: https://doi.org/10.1016/j.tree.2005.05.011

Pinzon, J.E., Pak, E.W., Tucker, C.J., Bhatt, U.S., Frost, G.V., Macander, M.J., 2023. Global Vegetation Greenness (NDVI) from AVHRR GIMMS-3G+, 1981-2022. ORNL Distributed Active Archive Center. http://doi.org/10.3334/ORNLDAAC/2187

R Core Team, 2014. R: A language and environment for statistical computing. MSOR connections 1.

Rifai, S.W., De Kauwe, M.G., Ukkola, A.M., Cernusak, L.A., Meir, P., Medlyn, B.E., Pitman, A.J., 2022. Thirty-eight years of CO2 fertilization has outpaced growing aridity to drive greening of Australian woody ecosystems. Biogeosciences 19, 491-515. DOI: https://doi.org/10.5194/bg-19-491-2022

Rodriguez, P., Giménez, R., Nosetto, M.D., Jobbágy, E.G., Magliano, P.N., 2020. Changes in water fluxes partition related to the replacement of native dry forests by crops in the Dry Chaco. J. Arid Environ. 183, 104281. http://doi.org/10.1016/j.jaridenv.2020.104281 DOI: https://doi.org/10.1016/j.jaridenv.2020.104281

Running, S.W., Nemani, R.R., 1988. Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates. Remote Sens. Environ. 24, 347-367. http://doi.org/10.1016/0034-4257(88)90034-X DOI: https://doi.org/10.1016/0034-4257(88)90034-X

Sadok, W., Jagadish, S.V.K., 2020. The Hidden Costs of Nighttime Warming on Yields. Trends in Plant Science 25, 644-651. http://doi.org/10.1016/j.tplants.2020.02.003 DOI: https://doi.org/10.1016/j.tplants.2020.02.003

Santoni, C.S., Jobbágy, E.G., Contreras, S., 2010. Vadose transport of water and chloride in dry forests of central Argentina: the role of land use and soil texture. Water Resour. Res. 46, W10541. http://doi.org/10.1029/2009WR008784 DOI: https://doi.org/10.1029/2009WR008784

Scheff, J., Frierson, D.M.W., 2014. Scaling Potential Evapotranspiration with Greenhouse Warming. J. Clim. 27, 1539-1558. http://doi.org/10.1175/JCLI-D-13-00233.1 DOI: https://doi.org/10.1175/JCLI-D-13-00233.1

Symeonakis, E., and Drake, N., 2004. Monitoring desertification and land degradation over sub-Saharan Africa. Int. J. Remote Sensing 25, 573-592. http://doi.org/10.1080/0143116031000095998 DOI: https://doi.org/10.1080/0143116031000095998

Viglizzo, E.F., Frank, F.C., 2006. Ecological interactions, feedbacks, thresholds and collapses in the Argentine Pampas in response to climate and farming during the last century. Quaternary International 158, 122-126. http://doi.org/10.1016/j.quaint.2006.05.022 DOI: https://doi.org/10.1016/j.quaint.2006.05.022

White, M.A., De Beurs, K.M., Didan, K., Inouye, D.W., Richardson, A.D., Jensen, O.P., O'keefe, J., Zhang, G., Nemani, R.R., Van Leeuwen, W.J.D., Brown, J.F., De Wit, A., Schaepman, M., Lin, X., Dettinger, M., Bailey, A.S., Kimball, J., Schwartz, M.D., Baldocchi, D.D., Lee, J.T., Lauenroth, W.K., 2009. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Global Change Biol. 15, 2335-2359. http://doi.org/10.1111/j.1365-2486.2009.01910.x DOI: https://doi.org/10.1111/j.1365-2486.2009.01910.x

Whitworth-Hulse, J.I., Jobbágy, E.G., Borrás, L., Alsina, S.E., Houspanossian, J., Nosetto, M.D., 2023. The expansion of rainfed grain production can generate spontaneous hydrological changes that reduce climate sensitivity. Agriculture, Ecosystems & Environment 349, 108440. http://doi.org/10.1016/j.agee.2023.108440 DOI: https://doi.org/10.1016/j.agee.2023.108440

Publicado

2025-11-25

Cómo citar

1.
Alsina S, Jobbágy EG, Nosetto MD. Determinantes de un nuevo escenario hidrológico en la región agrícola Chaco-Pampeana: influencia de las tendencias climáticas y de la vegetación. CIG [Internet]. 25 de noviembre de 2025 [citado 28 de noviembre de 2025];. Disponible en: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/6782

Datos de los fondos