Wildfire Occurrence In Chile
Regional Modeling And Implications For Risk Management
DOI:
https://doi.org/10.18172/cig.6792Keywords:
wildfires, Chile, Random Forest, Spatial Modeling, Risk AssessmentAbstract
Wildfires pose a major environmental and societal challenge, due to their link with anthropogenic activities and changing climatic conditions. This study aimed to enhance our understanding of the drivers of wildfire occurrence across continental Chile by developing robust predictive models incorporating climatic, land cover, and anthropogenic variables. We leveraged geospatial data on historical fire events, infrastructure, fuels and weather, coupled with historical fire records through Random Forest binary models to ascertain the key drivers of ignition across four distinct ecological zones: North, Central Chile, South, and the Andes. Our analysis explored potential differences between arson and unintended fires within these regions. Model validation, assessed using the Area Under the Curve (AUC), revealed significant regional variations in predictive performance. The southern and northern zones exhibited higher predictive capacity, potentially due to less complex landscapes and fewer ignition sources compared to the densely populated and infrastructure- prone central zone, which showed the lowest AUC. The Andes region displayed intermediate performance. Our results indicated that anthropogenic factors, particularly the distance to power lines, roads, and the wildland-urban interface (WUI), were consistently among the most important predictors of wildfire ignition across the majority of the studied regions. This highlights the significant impact of human accessibility and infrastructure on fire incidence in Chile. In contrast, fuel-related and climatic variables, such as Dry Fuel Moisture Content (DFMC) and its anomaly, showed generally lower importance, although their influence increased notably in the southern zone. Partial dependence plots further elucidated the distinct ways in which these key variables influenced ignition probability across different regions and between arson and unintended fires. The findings emphasize the necessity of adopting region-specific approaches in wildfire modeling and prevention strategies, acknowledging the different interactions between natural and anthropogenic factors across Chile. This research provides a fundamental understanding for future advanced modeling and targeted risk management efforts. Future research should aim to incorporate more detailed socioeconomic data to further refine predictive models and inform effective risk mitigation strategies.
Downloads
References
Aguirre, P., León, J., González-Mathiesen, C., Román, R., Penas, M., and Ogueda, A., 2024. Modelling the vulnerability of urban settings to wildland–urban interface fires in Chile. Natural Hazards and Earth System Sciences, 24, 1521-1537. https://doi.org/10.5194/nhess-24-1521-2024
Azócar de la Cruz, G., Alfaro, G., Alonso, C., Calvo, R., Orellana, P., 2022. Modeling the ignition risk: Analysis before and after megafire on Maule region, Chile. Applied Sciences, 12(18), 9353. https://doi.org/10.3390/app12189353
Bianchi, L. O., Villalba, R., Oddi, F. J., Mundo, I. A., Radins, M., Amoroso, M. M., Srur, A. M., Bonada, A., 2023. Climate, landscape, and human influences on fire in southern Patagonia: A basin-scale approach. Forest Ecology and Management, 539, 121015. https://doi.org/10.1016/j.foreco.2023.121015
Bjånes, A., De La Fuente, R., Mena, P., 2021. A deep learning ensemble model for wildfire susceptibility mapping. Ecological Informatics, 65, 101397. https://doi.org/10.1016/j.ecoinf.2021.101397
Bowman, D. M. J. S., Moreira-Muñoz, A., Kolden, C. A., Chávez, R. O., Muñoz, A. A., Salinas, F., González-Reyes, Á., Rocco, R., de la Barrera, F., Williamson, G. J., Borchers, N., Cifuentes, L. A., Abatzoglou, J. T., Johnston, F. H., 2019. Human-environmental drivers and impacts of the globally extreme 2017 Chilean fires. Ambio, 48(4), 350-362. https://doi.org/10.1007/s13280-018-1084-1
Breiman, L., 2001. Random forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
Castillo, M., Pedernera, P., Pena, E., 2003. Incendios forestales y medio ambiente: una síntesis global. Revista Ambiente y Desarrollo, 9(3), 44-53.
Castillo, M., Julio-Alvear, G., Garfias Salinas, R., 2015. Current wildfire risk status and forecast in Chile: Progress and future challenges. In J. F. Shroder & D. Paton (Eds.), Wildfire hazards, risks and disasters (pp. 59-75. Elsevier. https://doi.org/10.1016/B978-0-12-410434-1.00004-X
Chakraborty, T., Composto, J., 2022. California in Flames: A Literature Review on the Causes and Effects of Wildfires. Journal of Student Research, 11(2). https://doi.org/10.47611/jsrhs.v11i2.2653
Chicas, S. D., Østergaard Nielsen, J., 2022. Who are the actors and what are the factors that are used in models to map forest fire susceptibility? A systematic review. Natural Hazards, 114(3), 2417-2434. https://doi.org/10.1007/s11069-022-05495-5
Comisión Nacional del Medio Ambiente (CONAMA)., 2006. Estudio de la variabilidad climática en Chile para el siglo XXI: Informe final. Departamento de Geofísica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile.
Copernicus Climate Change Service (C3S) (2019): ERA5-Land hourly data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). http://doi.org/10.24381/cds.e2161bac
Corporación Nacional Forestal (CONAF)., n.d. Plantaciones forestales. Retrieved September 25, 2025, from https://www.conaf.cl/manejo-de-ecosistemas/gestion-forestal-suelos-y-agua/plantaciones-forestales/
Costafreda-Aumedes, S., Comas, C., Vega-García, C., 2017. Human-caused fire occurrence modelling in perspective: A review. International Journal of Wildland Fire, 26(12), 983-998. https://doi.org/10.1071/WF17026
Errázuriz, A. M., González, J. I., Henríquez, M., Cereceda, P., González, M., Rioseco, R., 1998. Manual de Geografía de Chile (3rd ed.). Editorial Andrés Bello.
FAO, Plan Bleu., 2018. State of Mediterranean Forests 2018. Food and Agriculture Organization of the United Nations, Rome and Plan Bleu, Marseille. Retrieved from https://openknowledge.fao.org/handle/20.500.14283/ca2081en
Garay, R., Castillo, M., Zarricueta, R., Vergara, J., 2019. Territorio, viviendas y áreas de incendios forestales de interfaz: localidades periurbanas en torno al Gran Santiago, Chile. XI Seminario Internacional de Investigación en Urbanismo, Barcelona-Santiago de Chile, Junio 2019. https://doi.org/10.5821/siiu.6972
Garfias, R., Castillo, M., Ruiz, F., Julio-Alvear, G., Quintanilla, V., Antúnez, J., 2012. Caracterización socioeconómica de la población en áreas de riesgo de incendios forestales. Estudio de caso. Interfaz urbano-forestal, provincia de Valparaíso. Chile central. Territorium, 19, 101-109. https://doi.org/10.14195/1647-7723_19_12
Gelabert, P., Jiménez-Ruano, A., Ribalaygua, J., Torres, L., Rodrigues, M., 2025. Human-caused ignition pathways under climate change scenarios in Eastern Spain. Geomatics, Natural Hazards and Risk, 16(1). https://doi.org/10.1080/19475705.2025.2472864
González, M. E., Lara, A., Urrutia, R., Bosnich, J., 2011. Cambio climático y su impacto potencial en la ocurrencia de incendios forestales en la zona centro-sur de Chile (33º 1 - 42º S). Bosque (Valdivia), 32(3), 215-219. https://doi.org/10.4067/S0717-92002011000300002
González, M. E., Sapiains, R., Gómez-González, S., Garreaud, R., Miranda, A., Galleguillos, M., Jacques, M., Pauchard, A., Hoyos, J., Cordero, L., Vásquez, F., Lara, A., Aldunce, P., Delgado, V., Arriagada, U., Sepúlveda, A., Farías, L., García, R., Rondanelli, R., Ponce, R., Vargas, F., Rojas, M., Boisier, J. P. C., Carrasco, L., Little, C., Osses, M., Zamorano, C., Díaz-Hormazábal, I., Ceballos, A., Guerra, E., Moncada, M., Castillo, I., 2020. Incendios forestales en Chile: causas, impactos y resiliencia. Centro de Ciencia del Clima y la Resiliencia (CR)2, Universidad de Chile, Universidad de Concepción y Universidad Austral de Chile.
Guélat, J., Kéry, M., 2018. Effects of spatial autocorrelation and imperfect detection on species distribution models. Methods in Ecology and Evolution, 9, 1614-1625. https://doi.org/10.1111/2041-210X.12983
Jaksic, F. M, Fariña, J. M., 2015. Incendios, sucesión y restauración ecológica en contexto. Anales del Instituto de la Patagonia, 43(1), 23-34.https://doi.org/10.4067/S0718-686X2015000100003
Keeping, T., Harrison, S. P., Prentice, I. C., 2024. Modelling the daily probability of wildfire occurrence in the contiguous United States. Environmental Research Letters, 19(2), 024036. https://doi.org/10.1088/1748-9326/ad21b0
Kelly, L. T., Fletcher, M.-S., Menor, I. O., Pellegrini, A. F. A., Plumanns-Pouton, E. S., Pons, P., Williamson, G. J., Bowman, D. M. J. S., 2023. Understanding Fire Regimes for a Better Anthropocene. Annual Review of Environment and Resources, 48, 207-235. https://doi.org/10.1146/annurev-environ-120220-055357
Kitzberger, T., 2015. Relación entre el clima y los grandes incendios forestales en el noroeste de la patagonia. Desde La Patagonia. Difundiendo Saberes, 12(19). Retrieved from https://revele.uncoma.edu.ar/index.php/desdelapatagonia/article/view/3416
Kuhn, M., 2008. Building predictive models in R using the caret package. Journal of Statistical Software, 28(5), 1-26. https://doi.org/10.18637/jss.v028.i05
Leone, V., Lovreglio, R., Martín, M.P., Martínez, J., Vilar, L., 2009. Human Factors of Fire Occurrence in the Mediterranean. In E. Chuvieco (Eds.), Earth Observation of Wildland Fires in Mediterranean Ecosystems (pp. 149-170). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01754-4_11
Luebert, F., Pliscoff, P., 2022. The vegetation of Chile and the EcoVeg approach in the context of the International Vegetation Classification project. Vegetation Classification and Survey, 3, 15-28. https://doi.org/10.3897/VCS.67893
MapBiomas Chile Project., 2022. Collection 1 of the Annual Land Cover and Land Use Maps of Continental Chile [Raster map]. Retrieved from https://storage.googleapis.com/mapbiomas-public/initiatives/chile/coverage/chile_coverage_2022.tif
Martín, Y., Zúñiga-Antón, M., Rodrigues Mimbrero, M., 2018. Modelling temporal variation of fire-occurrence towards the dynamic prediction of human wildfire ignition danger in northeast Spain. Geomatics, Natural Hazards and Risk, 10(1), 385-411. https://doi.org/10.1080/19475705.2018.1526219
McWethy, D. B., Pauchard, A., García, R. A., Holz, A., González, M. E., Veblen, T. T., Stahl, J., Currey, B., 2018. Landscape drivers of recent fire activity (2001-2017) in south-central Chile. PLOS ONE, 13(10), e0205287. https://doi.org/10.1371/journal.pone.0201195
Microsoft., 2024. Global ML building footprints [GitHub repository]. GitHub. Retrieved from https://github.com/microsoft/GlobalMLBuildingFootprints
Nunes, A. N., Lourenço, L., Castro Meira, A. C., 2016. Exploring spatial patterns and drivers of forest fires in Portugal (1980–2014). Science of The Total Environment, 573, 1190-1202. https://doi.org/10.1016/j.scitotenv.2016.03.121
Ochoa, C., Bar-Massada, A., Chuvieco, E., 2024. A European-scale analysis reveals the complex roles of anthropogenic and climatic factors in driving the initiation of large wildfires. Science of The Total Environment, 917, 170443. https://doi.org/10.1016/j.scitotenv.2024.170443
Oliveira, S., Oehler, F., San-Miguel-Ayanz, J., Camia, A., Pereira, J. M. C., 2012. Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest. Forest Ecology and Management, 275, 117-129. https://doi.org/10.1016/j.foreco.2012.03.003
Peña-Fernández, E., Valenzuela-Palma, L., 2008. Incremento de los incendios forestales en bosques naturales y plantaciones forestales en Chile. En Memorias del Segundo Simposio Internacional Sobre Políticas, Planificación y Economía de los Programas de Protección Contra Incendios Forestales: Una Visión Global (pp. 595-612).
Poblete, P., Gysling, J., Álvarez, V., Bañados, J. C., Kahler, C., Pardo, E., Soto, D., Baeza, D., 2023. Anuario Forestal 2023 (Boletín Estadístico N° 192). Instituto Forestal, Chile. https://doi.org/10.52904/20.500.12220/32652
Prior, T., Eriksen, C., 2013. Wildfire preparedness, community cohesion and social-ecological systems. University of Wollongong. https://hdl.handle.net/10779/uow.27737421.v1
R Core Team., 2023. R: A language and environment for statistical computing [Software]. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/
Rodrigues, M., Cunill Camprubí, À., Balaguer-Romano, R., Coco Megía, C. J., Castañares, F., Ruffault, J., Fernandes, P. M., Resco de Dios, V., 2023a. Drivers and implications of the extreme 2022 wildfire season in Southwest Europe. Science of The Total Environment, 859, 160320. https://doi.org/10.1016/j.scitotenv.2022.160320
Rodrigues, M., Jiménez-Ruano, A., Gelabert, P. J., Resco de Dios, V., Torres, L., Ribalaygua, J., Vega-García, C., 2023b. Modelling the daily probability of lightning-caused ignition in the Iberian Peninsula. International Journal of Wildland Fire, 32(3), 351-362. https://doi.org/10.1071/WF22123
Sarricolea, P., Herrera-Ossandon, M., Meseguer-Ruiz, Ó., 2016. Climatic regionalisation of continental Chile. Journal of Maps, 13(2), 66-73. https://doi.org/10.1080/17445647.2016.1259592
Sarricolea, P., Serrano-Notivoli, R., Fuentealba, M., Hernández-Mora, M., de la Barrera, F., Smith, P., Meseguer-Ruiz, Ó., 2020. Recent wildfires in Central Chile: Detecting links between burned areas and population exposure in the wildland urban interface. Science of The Total Environment, 706, 135894. https://doi.org/10.1016/j.scitotenv.2019.135894
Sayarshad, H. R., 2023. Preignition risk mitigation model for analysis of wildfires caused by electrical power conductors. Electrical Power and Energy Systems, 153, 109353. https://doi.org/10.1016/j.ijepes.2023.109353
Schuster-Olbrich, J. P., Vich, G., Miralles-Guasch, C., 2024. Expansión urbana más allá del límite urbano: un análisis de Santiago de Chile desde la planificación urbana y sus contradicciones normativas territoriales. EURE (Santiago), 50(150), 1-22. https://doi.org/10.7764/eure.50.150.08
Úbeda, X., Sarricolea, P., 2016. Wildfires in Chile: A review. Global and Planetary Change, 146, 152-161. https://doi.org/10.1016/j.gloplacha.2016.10.004
Urzúa Valenzuela, N. V., Cáceres, F., 2011. Incendios forestales: principales consecuencias económicas y ambientales en Chile. RIAT: Revista Interamericana de Medioambiente y Turismo, 7(1), 18-24. http://dx.doi.org/10.4067/riatvol7iss1pp18-24%250718-235X
Zhou, X. H., Obuchowski, N. A., McClish, D. K., 2011. Statistical Methods in Diagnostic Medicine. Statistical Methods in Diagnostic Medicine. https://doi.org/10.1002/9780470906514
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Rodrigo Crespo Pérez, Jorge Félez Bernal, Dhais Peña Angulo, Roberto Serrano-Notivoli, Samuel Barrao Simorte, Juan Ramón de la Riva Fernández, Luiz Felipe Galizia, Marcos Rodrigues Mimbrero

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain copyright of articles and authorize Cuadernos de Investigación Geográfica / Geographical Research Letters the first publication. They are free to share and redistribute the article without obtaining permission from the publisher as long as they give appropriate credit to the editor and the journal.
Self-archiving is allowed too. In fact, it is recommendable to deposit a PDF version of the paper in academic and/or institutional repositories.
It is recommended to include the DOI number.
This journal is licensed under a Creative Commons Attribution 4.0 International License




