Postfire Vegetation Recovery And Spectral Separability Over Amazonian Savanna Ecosystems Using Remote Sensing Time Series And Fuel Loads Measurements
DOI:
https://doi.org/10.18172/cig.6889Keywords:
Burned areas, Landsat, Sentinel 2, NDVI, tropical savannasAbstract
Monitoring and understanding vegetation responses to fire in Amazonian savanna ecosystems remains a very important scientific challenge to improve the landscape management practices of these areas. In this sense, the present study analyzes the dynamics of spectral separability as well as the postfire vegetation recovery process related to fire experiments carried out in open savanna ecosystems of the Campos Amazônicos National Park (Brazil). For this purpose, a harmonized Landsat and Sentinel-2 dataset was processed and analyzed. The time series of the Normalized Difference Vegetation Index (NDVI) and the Normalized Burned Ratio 2 (NBR2) spectral indices were also generated from this same dataset for the period from 2019 to 2023 and evaluated in combination with fine fuel load in-situ measurements. M-Statistics and mean absolute difference were calculated comparing data from burned and unburned plots, considering different treatments of fire seasonality (Early-Dry Season – EDS; Middle-Dry Season – MDS fires) and time since last fire (2-year-old fuel age; 3-year-old fuel age; and 10-year-old or older fuel age fires). The combined use of Sentinel-2 and Landsat resulted in an availability of cloud-free or partially cloud-free images ≈0.6 times greater than that obtained when using Landsat images exclusively. The potential of the NBR2 stood out, generating statistically significant mean absolute difference values when comparing EDS and MDS fires, and also when comparing 2-year-old fuel age areas with 3-year-old or 10-year-old or older fuel age areas. Satellite and field information converged in the detection of a rapid response of vegetation to fire in these ecosystems, demonstrating that conditions similar to those observed before the fire were reached after three rainy seasons. The results reinforce the potential of Landsat and Sentinel-2 harmonized remote sensing datasets to assess and monitor fire-affected areas over Amazonian savanna ecosystems, providing ecological meaning and establishing connections between remote sensing and field datasets.
Downloads
References
Ab’Saber, A., 1977. Espaços ocupados pela expansão dos climas secos na América do Sul, por ocasião dos períodos glaciais quaternários. Paleoclimas 3, 1-19.
Ab’Saber, A.N., 2003. Os domínios de natureza no Brasil: potencialidades paisagísticas. Ateliê Editorial, São Paulo.
Alberton, B., Torres, R. da S., Cancian, L.F., Borges, B.D., Almeida, J., Mariano, G.C., Santos, J. dos, Morellato, L.P.C., 2017. Introducing digital cameras to monitor plant phenology in the tropics: applications for conservation. Perspectives in Ecology and Conservation 15, 82-90. https://doi.org/10.1016/j.pecon.2017.06.004
Alcaras, E., Costantino, D., Guastaferro, F., Parente, C., Pepe, M., 2022. Normalized Burn Ratio Plus (NBR+): A New Index for Sentinel-2 Imagery. Remote Sensing 14, 1-19. https://doi.org/10.3390/rs14071727
Alves, D.B., Alvarado, S.T., 2019. Variação espaço-temporal da ocorrência do fogo nos biomas brasileiros com base na análise de produtos de sensoriamento remoto. Geografia 44, 321-345. https://doi.org/10.5016/geografia.v44i2.15119
Alves, D.B., Fidelis, A., Pérez-Cabello, F., Alvarado, S.T., Conciani, D.E., Cambraia, B.C., Silveira, A.L.P. da, Silva, T.S.F., 2022. Impact of image acquisition lag-time on monitoring short-term postfire spectral dynamics in tropical savannas: the Campos Amazônicos Fire Experiment. Journal of Applied Remote Sensing 16, 1-24. https://doi.org/10.1117/1.jrs.16.034507
Alves, D.B., Montorio Llovería, R., Pérez-Cabello, F., Vlassova, L., 2018. Fusing Landsat and MODIS data to retrieve multispectral information from fire-affected areas over tropical savannah environments in the Brazilian Amazon. International Journal of Remote Sensing 39, 1-23. https://doi.org/10.1080/01431161.2018.1479790
Alves, D.B., Pérez-Cabello, F., 2017. Multiple remote sensing data sources to assess spatio-temporal patterns of fire incidence over Campos Amazônicos Savanna Vegetation Enclave (Brazilian Amazon). Science of the Total Environment 601-602, 142-158. https://doi.org/10.1016/j.scitotenv.2017.05.194
Alves, D.B., Pérez-Cabello, F., Rodrigues Mimbrero, M., 2015. Land-use and land-cover dynamics monitored by NDVI multitemporal analysis in a selected southern Amazonian area (Brazil) for the last three decades. ISPRS - The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-7/W3, 329-335. https://doi.org/10.5194/isprsarchives-XL-7-W3-329-2015
Andersen, A.N., Cook, G.D., Williams, R.J., 2003. Fire in Tropical Savannas: The Kapalga Experiment. Springer-Verlag, New York, USA.
Archibald, S., Lehmann, C.E.R., Belcher, C.M., Bond, W.J., Bradstock, R.A., Daniau, A.L., Dexter, K.G., Forrestel, E.J., Greve, M., He, T., Higgins, S.I., Hoffmann, W.A., Lamont, B.B., McGlinn, D.J., Moncrieff, G.R., Osborne, C.P., Pausas, J.G., Price, O., Ripley, B.S., Rogers, B.M., Schwilk, D.W., Simon, M.F., Turetsky, M.R., Van Der Werf, G.R., Zanne, A.E., 2018. Biological and geophysical feedbacks with fire in the Earth system. Environmental Research Letters 13. https://doi.org/10.1088/1748-9326/aa9ead
Asner, G.P., 2001. Cloud cover in Landsat observations of the Brazilian Amazon. International Journal of Remote Sensing 22, 3855-3862. https://doi.org/10.1080/01431160010006926
Belda, S., Pipia, L., Morcillo-Pallarés, P., Rivera-Caicedo, J.P., Amin, E., De Grave, C., Verrelst, J., 2020. DATimeS: A machine learning time series GUI toolbox for gap-filling and vegetation phenology trends detection. Environmental Modelling & Software 127, 104666. https://doi.org/10.1016/j.envsoft.2020.104666
Berra, E.F., Fontana, D.C., Yin, F., Breunig, F.M., 2024. Harmonized Landsat and Sentinel-2 Data with Google Earth Engine. Remote Sensing 16. https://doi.org/10.3390/rs16152695
Bolognesi, S.F., Pasolli, E., Belfiore, O.R., De Michele, C., D’Urso, G., 2020. Harmonized landsat 8 and sentinel-2 time series data to detect irrigated areas: An application in Southern Italy. Remote Sensing 12. https://doi.org/10.3390/RS12081275
Bousquet, E., Mialon, A., Rodriguez-Fernandez, N., Mermoz, S., Kerr, Y., 2022. Monitoring post-fire recovery of various vegetation biomes using multi-wavelength satellite remote sensing. Biogeosciences 19, 3317-3336. https://doi.org/10.5194/bg-19-3317-2022
Burton, C., Lampe, S., Kelley, D.I., Thiery, W., Hantson, S., Christidis, N., Gudmundsson, L., Forrest, M., Burke, E., Chang, J., Huang, H., Ito, A., Kou-Giesbrecht, S., Lasslop, G., Li, W., Nieradzik, L., Li, F., Chen, Y., Randerson, J., Reyer, C.P.O., Mengel, M., 2024. Global burned area increasingly explained by climate change. Nature Climate Change 14, 1186-1192. https://doi.org/10.1038/s41558-024-02140-w
Carneiro Filho, A., 1993. Cerrados amazônicos: fósseis vivos? Algumas reflexões. Revista do Instituto Geológico 14, 63-68. https://doi.org/10.5935/0100-929X.19930010
Carvalho, W.D. de, Mustin, K., 2017. The highly threatened and little known Amazonian savannahs. Nature Ecology & Evolution 1, 0100. https://doi.org/10.1038/s41559-017-0100
Cheney, P., Sullivan, A., 1997. Grassfires: Fuel, Weather and Fire Behaviour. CSIRO, Melbourne, Australia.
Chuvieco, E., Martín, M.P., Palacios, A., 2002. Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination. International Journal of Remote Sensing 23, 5103-5110. https://doi.org/10.1080/01431160210153129
Claverie, M., Ju, J., Masek, J.G., Dungan, J.L., Vermote, E.F., Roger, J.C., Skakun, S. V., Justice, C., 2018. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sensing of Environment 219, 145-161. https://doi.org/10.1016/j.rse.2018.09.002
Claverie, M., Masek, J.G., Ju, J., Dungan, J.L., 2017. Harmonized Landsat-8 Sentinel 2 (HLS) Product User’s Guide. https://doi.org/10.13140/RG.2.2.33017.26725
Collins, L., Trouvé, R., Baker, P.J., Cirulus, B., Nitschke, C.R., Nolan, R.H., Smith, L., Penman, T.D., 2023. Fuel reduction burning reduces wildfire severity during extreme fire events in south-eastern Australia. Journal of Environmental Management 343, 118171. https://doi.org/10.1016/j.jenvman.2023.118171
Coutinho, L.M., 1990. Fire in the Ecology of the Brazilian Cerrado, in: Goldammer, J.G. (Ed.), Fire in the Tropical Biota. Springer, Berlin, pp. 82-105. https://doi.org/10.1007/978-3-642-75395-4_6
Devries, B., Pratihast, A.K., Verbesselt, J., Kooistra, L., Herold, M., 2016. Characterizing Forest Change Using Community-Based Monitoring Data and Landsat Time Series. PLoS One 3, 1-25. https://doi.org/10.1371/journal.pone.0147121
ESA, European Space Agency, 2024. Copernicus Global Digital Elevation Model. https://doi.org/https://doi.org/10.5069/G9028PQB
Fontaine, J.B., Westcott, V.C., Enright, N.J., Lade, J.C., Miller, B.P., 2012. Fire behaviour in south-western Australian shrublands: evaluating the influence of fuel age and fire weather. International Journal of Wildland Fire 21, 385. https://doi.org/10.1071/WF11065
Fornacca, D., Ren, G., Xiao, W., 2018. Evaluating the Best Spectral Indices for the Detection of Burn Scars at Several Post-Fire Dates in a Mountainous Region of Northwest Yunnan, China. Remote Sensing 10, 1196. https://doi.org/10.3390/rs10081196
Frantz, D., 2019. FORCE-Landsat + Sentinel-2 analysis ready data and beyond. Remote Sensing 11. https://doi.org/10.3390/rs11091124
Fritsch, F.N., Carlson, R.E., 1980. Monotone Piecewise Cubic Interpolation. SIAM Journal on Numerical Analysis 17, 238-246.
Fuentes, I., Lopatin, J., Galleguillos, M., Ceballos-Comisso, A., Eyheramendy, S., Carrasco, R., 2024. Is the change deforestation? Using time-series analysis of satellite data to disentangle deforestation from other forest degradation causes. Remote Sensing Applications: Society and Environment 35, 101210. https://doi.org/10.1016/j.rsase.2024.101210
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., Michaelsen, J., 2015. The climate hazards infrared precipitation with stations — a new environmental record for monitoring extremes. Science Data 2, 150066. https://doi.org/10.1038/sdata.2015.66
Furley, P.A., Rees, R.M., Ryan, C.M., Saiz, G., 2008. Savanna burning and the assessment of long-term fire experiments with particular reference to Zimbabwe. Progress in Physical Geography 32, 611-634. https://doi.org/10.1177/0309133308101383
Gitas, I., Mitri, G., Veraverbeke, S., Polychronaki, A., 2012. Advances in Remote Sensing of Post-Fire Vegetation Recovery Monitoring - A Review, in: Fatoyinbo, L. Remote Sensing of Biomass - Principles and Applications. InTech. https://doi.org/10.5772/20571
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 202, 18-27. https://doi.org/10.1016/j.rse.2017.06.031
Haffer, J., Prance, G.T., 2002. Impulsos climáticos da evolução na Amazônia durante o Cenozóico: sobre a teoria dos refúgios da diferenciação biótica. Estudos Avançados 12. https://doi.org/10.1590/S0103-40142002000300014
Halsey, R.W., Keeley, J.E., Wilson, K., 2009. Fuel age and fire spread: natural conditions versus opportunities for fire suppression. U.S. Forest Service.
Hardesty, J., Myers, R., Fulks, W., 2005. Fire, ecosystems and people: a preliminary assessment of fire as a global conservation issue. Fire Management 22, 78-87.
Harris, S., Veraverbeke, S., Hook, S., 2011. Evaluating spectral indices for assessing fire severity in chaparral ecosystems (Southern California) using modis/aster (MASTER) airborne simulator data. Remote Sensing 3, 2403-2419. https://doi.org/10.3390/rs3112403
Higgins, S.I., Bond, W.J., February, E.C., Bronn, A., Euston-Brown, D.I.W., Enslin, B., Govender, N., Rademan, L., O’Regan, S., Potgieter, A.L.F., Scheiter, S., Sowry, R., Trollope, L., Trollope, W.S.W., 2007. Effects of four decades of fire manipulation on woody vegetation structure in savanna. Ecology 88, 1119-1125. https://doi.org/10.1890/06-1664
Hill, M.J., 2013. Vegetation index suites as indicators of vegetation state in grassland and savanna: An analysis with simulated SENTINEL 2 data for a North American transect. Remote Sensing of Environment 137, 94-111. https://doi.org/10.1016/j.rse.2013.06.004
Hoffmann, W.A., Adasme, R., Haridasan, M., De Carvalho, M.T., Geiger, E.L., Pereira, M.A.B., Gotsch, S.G., Franco, A.C., 2009. Tree topkill, not mortality, governs the dynamics of savanna-forest boundaries under frequent fire in central Brazil. Ecology 90, 1326-1337. https://doi.org/10.1890/08-0741.1
IBGE, Instituto Brasileiro de Geografia e Estatística, 2012. Manual técnico da vegetação brasileira. IBGE, Rio de Janeiro.
ICMBio, Instituto Chico Mendes de Conservação da Biodiversidade, 2016. Plano de Manejo - Parque Nacional dos Campos Amazônicos. Ministério do Meio Ambiente (MMA), Brasília, Brazil.
JT, Jupyter Team, 2015. Jupyter Notebook Project.
Kaufman, Y.J., Remer, L.A., 1994. Detection of forests using mid-IR reflectance: an application for aerosol studies. IEEE Transactions on Geoscience and Remote Sensing. 32, 672-683.
Key, C.H., Benson, N.C., 2006. Landscape assessment (LA): Sampling and analysis methods, in: Lutes, D.C., Keane, R.E., Caratti, J.F., Key, C.H., Benson, N.C., Sutherland, S., Gangi, L.J. (Eds.), FIREMON: Fire Effects Monitoring and Inventory System. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, CO, USA, pp. 1-55.
Lasaponara, R., 2006. Estimating spectral separability of satellite derived parameters for burned areas mapping in the Calabria region by using SPOT-Vegetation data. Ecological Modelling 6, 265-270. https://doi.org/10.1016/j.ecolmodel.2006.02.025
Laurentino, J. de S., 2023. Regeneração do estrato herbáceo após queimas experimentais no Parque Nacional dos Campos Amazônicos. Masther’s Dissertation, Universidade Estadual do Maranhão, Brasil.
Lhermitte, S., Verbesselt, J., Verstraeten, W.W., Veraverbeke, S., Coppin, P., 2011. Assessing intra-annual vegetation regrowth after fire using the pixel based regeneration index. ISPRS Journal of Photogrammetry and Remote Sensing 66, 17-27. https://doi.org/10.1016/j.isprsjprs.2010.08.004
MAPBIOMAS, 2023. Projeto MapBiomas – Coleção 9.0 da série anual de mapas de cobertura e uso de solo do Brasil. Available at: http://mapbiomas.org/ (last access: 18/03/25).
Marengo, J.A., Liebmann, B., Kousky, V.E., Filizola, N.P., Wainer, I.C., 2001. Onset and end of the rainy season in the Brazilian Amazon Basin. Journal of Climate 14, 833-852. https://doi.org/10.1175/1520-0442(2001)014<0833:OAEOTR>2.0.CO;2
Miranda, H.S., 2010. Efeitos do regime do fogo sobre a estrutura de comunidades de Cerrado: Projeto Fogo, 2ed ed. IBAMA, Brasília, Brasil.
Miranda, H.S., Silva, E.P.R., Miranda, A.C., 1996. Comportamento do fogo em queimadas de campo sujo, in: Miranda, H.S., Saito, C.H., Souza, D.B.F. (Eds.), Impacto de Queimadas Em Áreas de Cerrado e Restinga. Universidade de Brasília, Brasilia, Brazil, pp. 1-10.
Morton, D.C., DeFries, R.S., Nagol, J., Souza Jr., C.M., Kasischke, E.S., Hurtt, G.C., Dubayah, R., 2011. Mapping canopy damage from understory fires in Amazon forests using annual time series of Landsat and MODIS data. Remote Sensing of Environment 115, 1706-1720. https://doi.org/10.1016/j.rse.2011.03.002
Motta, P.E.F., Curi, N., Franzmeier, D.F., 2002. Relation of soils and geomorphic surfaces in the Brazilian Cerrado, in: Oliveira, P.S., Marquis, R.J. (Eds.), The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna. Columbia University Press, New York, EUA, pp. 13-32.
Murphy, S., 2020. Atmospheric correction of a (single) Sentinel 2 image. Available at: https://github.com/samsammurphy/gee-atmcorr-S2 (last access: 01/03/2025)
Nguyen, M.D., Baez-Villanueva, O.M., Bui, D.D., Nguyen, P.T., Ribbe, L., 2020. Harmonization of Landsat and Sentinel 2 for crop monitoring in drought prone areas: Case studies of Ninh Thuan (Vietnam) and Bekaa (Lebanon). Remote Sensing 12, 1-18. https://doi.org/10.3390/rs12020281
Oliveira, U., Soares-Filho, B., Bustamante, M., Gomes, L., Ometto, J.P., Rajão, R., 2022. Determinants of Fire Impact in the Brazilian Biomes. Frontiers in Forests and Global Change 5, 1-12. https://doi.org/10.3389/ffgc.2022.735017
Oliveira, U., Soares-Filho, B., de Souza Costa, W.L., Gomes, L., Bustamante, M., Miranda, H., 2021. Modeling fuel loads dynamics and fire spread probability in the Brazilian Cerrado. Forest Ecology and Management 482, 118889. https://doi.org/10.1016/j.foreco.2020.118889
Othman, M.A., Ash’Aari, Z.H., Aris, A.Z., Ramli, M.F., 2018. Tropical deforestation monitoring using NDVI from MODIS satellite: A case study in Pahang, Malaysia. IOP Conference Series: Earth and Environmental Science 169. https://doi.org/10.1088/1755-1315/169/1/012047
Pacheco, A. da P., da Silva Junior, J.A., Ruiz-Armenteros, A.M., Henriques, R.F.F., de Oliveira Santos, I., 2023. Analysis of Spectral Separability for Detecting Burned Areas Using Landsat-8 OLI/TIRS Images under Different Biomes in Brazil and Portugal. Forests 14. https://doi.org/10.3390/f14040663
Pausas, J.G., Bond, W.J., 2020. On the Three Major Recycling Pathways in Terrestrial Ecosystems. Trends in Ecology & Evolution 35, 767-775. https://doi.org/10.1016/j.tree.2020.04.004
Pereira Júnior, A.C., Oliveira, S.L.J., Pereira, J.M.C., Turkman, M.A.A., 2014. Modelling fire frequency in a Cerrado savanna protected area. PLoS One 9. https://doi.org/10.1371/journal.pone.0102380
Pérez-Cabello, F., Montorio, R., Alves, D.B., 2021. Remote sensing techniques to assess post-fire vegetation recovery. Current Opinion in Environmental Science & Health 21, 100251. https://doi.org/10.1016/j.coesh.2021.100251
Pettorelli, N., Vik, J.O., Mysterud, A., Gaillard, J.M., Tucker, C.J., Stenseth, N.C., 2005. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution 20, 503-510. https://doi.org/10.1016/j.tree.2005.05.011
Pineda Valles, H.E., Nunes, G.M., Berlinck, C.N., Gonçalves, L.G., Ribeiro, G.H.P. de M., 2023. Use of Remotely Piloted Aircraft System Multispectral Data to Evaluate the Effects of Prescribed Burnings on Three Macrohabitats of Pantanal, Brazil. Remote Sensing 15, 2934. https://doi.org/10.3390/rs15112934
Pivello, V.R., 2011. The use of fire in the cerrado and amazonian rainforests of Brazil: past and present. Fire Ecology 7, 24-39. https://doi.org/10.4996/fireecology.0701024
Pivello, V.R., Vieira, I., Christianini, A. V., Ribeiro, D.B., da Silva Menezes, L., Berlinck, C.N., Melo, F.P.L., Marengo, J.A., Tornquist, C.G., Tomas, W.M., Overbeck, G.E., 2021. Understanding Brazil’s catastrophic fires: Causes, consequences and policy needed to prevent future tragedies. Perspectives in Ecology and Conservation 19, 233-255. https://doi.org/10.1016/j.pecon.2021.06.005
Poortinga, A., Tenneson, K., Shapiro, A., Nquyen, Q., San Aung, K., Chishtie, F., Saah, D., 2019. Mapping Plantations in Myanmar by Fusing Landsat-8, Sentinel-2 and Sentinel-1 Data along with Systematic Error Quantification. Remote Sensing 11, 831. https://doi.org/10.3390/rs11070831
Prance, G.T., 1996. Islands in Amazonia. Philosophical Transactions of the Royal Society B: Biological Sciences 351, 823-833. https://doi.org/10.1098/rstb.1996.0077
Ratter, J.A., Bridgewater, S., Ribeiro, J.F., 2003. Analysis of the floristic composition of the Brazilian cerrado vegetation: comparison of the woody vegetation of 376 areas. Edinburgh Journal of Botany 57-109. https://doi.org/10.1017/S0960428603000064
RCT, R Core Team, 2019. R: A Language and Environment for Statistical Computing.
Rissi, M.N., Baeza, M.J., Gorgone-Barbosa, E., Zupo, T., Fidelis, A., 2017. Does season affect fire behaviour in the Cerrado? International Journal of Wildland Fire 26, 427-433. https://doi.org/10.1071/wf14210
Rouse, J.W., Hass, R.H., Schell, J.A., Deering, D.W., 1974. Monitoring vegetation systems in the great plains with ERTS, in: Freden, S.C., Mercanti, E.P., Becker, M.A. (Eds.), Third Earth Resources Technology Satellite (ERTS) Symposium. NASA Goddard Space Flight Center, Washington, DC, United States, pp. 309-317. https://doi.org/citeulike-article-id:12009708
Rowan, G.S.L., Kalacska, M., Inamdar, D., Arroyo-Mora, J.P., Soffer, R., 2021. Multi-Scale Spectral Separability of Submerged Aquatic Vegetation Species in a Freshwater Ecosystem. Frontiers in Environmental Science 9, 1-22. https://doi.org/10.3389/fenvs.2021.760372
Roy, D.P., Lewis, P., Schaaf, C., Devadiga, S., Boschetti, L., 2006. The Global Impact of Clouds on the Production of MODIS Bidirectional Reflectance Model-Based Composites for Terrestrial Monitoring. IEEE Geoscience and Remote Sensing Letters 3, 452-456. https://doi.org/10.1109/LGRS.2006.875433
Roy, D.P., Zhang, H.K., Ju, J., Gomez-Dans, J.L., Lewis, P.E., Schaaf, C.B., Sun, Q., Li, J., Huang, H., Kovalskyy, V., 2016. A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance. Remote Sensing of Environment 176, 255-271. https://doi.org/10.1016/j.rse.2016.01.023
Sano, E.E., Ferreira, L.G., Asner, G.P., Steinke, E.T., 2007. Spatial and temporal probabilities of obtaining cloud‐free Landsat images over the Brazilian tropical savanna. International Journal of Remote Sensing 28, 2739-2752. https://doi.org/10.1080/01431160600981517
Scheffler, D., Frantz, D., Segl, K., 2020. Spectral harmonization and red edge prediction of Landsat-8 to Sentinel-2 using land cover optimized multivariate regressors. Remote Sensing of Environment 241, 111723. https://doi.org/10.1016/j.rse.2020.111723
Scheffler, D., Hollstein, A., Diedrich, H., Segl, K., Hostert, P., 2017. AROSICS: An automated and robust open-source image co-registration software for multi-sensor satellite data. Remote Sensing 9. https://doi.org/10.3390/rs9070676
Schmidt, I.B., Eloy, L., 2020. Fire regime in the Brazilian Savanna: Recent changes, policy and management. Flora 268, 151613. https://doi.org/10.1016/j.flora.2020.151613
Senande-Rivera, M., Insua-Costa, D., Miguez-Macho, G., 2022. Spatial and temporal expansion of global wildland fire activity in response to climate change. Nature Communications 13, 1-9. https://doi.org/10.1038/s41467-022-28835-2
Simon, M.F., Grether, R., de Queiroz, L.P., Skema, C., Pennington, R.T., Hughes, C.E., 2009. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proceedings of the National Academy of Sciences 106, 20359-20364. https://doi.org/10.1073/pnas.0903410106
Soenen, S.A., Peddle, D.R., Coburn, C.A., 2005. SCS+C: A modified sun-canopy-sensor topographic correction in forested terrain. IEEE Transactions on Geoscience and Remote Sensing 43, 2148-2159. https://doi.org/10.1109/TGRS.2005.852480
Torres, J., Gonçalves, J., Marcos, B., Honrado, J., 2018. Indicator-based assessment of post-fire recovery dynamics using satellite NDVI time-series. Ecological Indicators 89, 199-212. https://doi.org/10.1016/j.ecolind.2018.02.008
van Wilgen, B.W., Govender, N., Biggs, H.C., 2007. The contribution of fire research to fire management: a critical review of a long-term experiment in the Kruger National Park, South Africa. International Journal of Wildland Fire 16, 519. https://doi.org/10.1071/WF06115
Veraverbeke, S., Lhermitte, S., Verstraeten, W.W., Goossens, R., 2011. A time-integrated MODIS burn severity assessment using the multi-temporal differenced normalized burn ratio (dNBR MT). International Journal of Applied Earth Observation and Geoinformation 13, 52-58. https://doi.org/10.1016/j.jag.2010.06.006
Williams, P.R., Congdon, R.A., Grice, A.C., Clarke, P.J., 2003. Fire-related cues break seed dormancy of six legumes of tropical eucalypt savannas in north-eastern Australia. Austral Ecology 28, 507-514. https://doi.org/10.1046/j.1442-9993.2003.01307.x
Wilson, R.T., 2013. Py6S: A Python interface to the 6S radiative transfer model. Computers and Geosciences 51, 166–171. https://doi.org/10.1016/j.cageo.2012.08.002
Wulder, M.A., Hermosilla, T., White, J.C., Hobart, G., Masek, J.G., 2021. Augmenting Landsat time series with Harmonized Landsat Sentinel-2 data products: Assessment of spectral correspondence. Science of Remote Sensing 4, 100031. https://doi.org/10.1016/j.srs.2021.100031
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Daniel Borini Alves, Antonio Laffayete Pires da Silveira, Bruno Contursi Cambraia, José Falcão Sobrinho, Thiago Sanna Freire Silva, Fernando Pérez-Cabello

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain copyright of articles and authorize Cuadernos de Investigación Geográfica / Geographical Research Letters the first publication. They are free to share and redistribute the article without obtaining permission from the publisher as long as they give appropriate credit to the editor and the journal.
Self-archiving is allowed too. In fact, it is recommendable to deposit a PDF version of the paper in academic and/or institutional repositories.
It is recommended to include the DOI number.
This journal is licensed under a Creative Commons Attribution 4.0 International LicenseFunding data
-
Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico
Grant numbers BP6-00241-00158.01.00/25 -
Fundação de Amparo à Pesquisa do Estado de São Paulo
Grant numbers 2019/07357-8 -
Agencia Estatal de Investigación
Grant numbers PID2020-118886RB-I00