Generación de mapas diarios de espesor de nieve a alta resolución espacial a partir de observaciones puntuales y fotografías automáticas diarias (time-lapse)

Autores/as

  • J. Revuelto Université Grenoble Alpes, Université de Toulouse, Météo-France-CNRS, CNRM, Centre d'Etudes de la Neige
  • E. Alonso-González Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC)
  • J.I. López-Moreno Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC)

DOI:

https://doi.org/10.18172/cig.3801

Palabras clave:

distribución del manto de nieve, áreas de montaña, fotografía time-lapse, láser escáner terrestre

Resumen

En zonas de montaña, la adquisición de información distribuida del manto de nieve a elevada resolución espacio-temporal es muy laboriosa y además se ve limitado por las condiciones ambientales. Este trabajo presenta una metodología sencilla para generar mapas diarios de espesor de nieve combinando observaciones automáticas in-situ con una base de datos pre-existente de mapas de espesor de nieve. Las observaciones automáticas las constituyen datos diarios de espesor de nieve en un punto conocido (estación meteorológica) y fotografías time-lapse georectificadas de la superficie cubierta por nieve. La base de datos pre-existente, la conforman mapas de espesor de nieve obtenidos en el pico de acumulación de nieve anual generados con un Láser Escáner Terrestre (TLS). La zona de estudio en la que se ha validado esta metodología es la Cuenca Experimental de Izas en los Pirineos Centrales Españoles, cuenca en la que existen un total de seis temporadas hibernales (2011-2017) con las observaciones TLS así como con las variables nivo-meteorológicas necesarias para simular la distribución diaria del espesor de nieve. Las contrastadas características climáticas de las seis temporadas disponibles, permite analizar la posibilidad de emplear patrones de distribución de nieve observados una temporada en particular para simular la distribución en periodos sin observaciones distribuida (TLS u otros métodos). La mitología i) determina para las observaciones TLS en el pico de acumulación el ratio entre el valor máximo de espesor de nieve y los valores observados en el resto de pixeles, ii) re-escala diariamente dichos ratios para las zonas cubiertas por nieve a partir de la información de las fotografías time-lapse y iii) calcular la distribución de nieve con los ratios re-escalados y la observación diaria de espesor en nieve en la estación meteorológica. El promedio de los seis picos de acumulación observados con el TLS ha resultado ser la combinación que ha obtenido los mejores resultados. Pese a la simplicidad de esta metodología, los valores simulados han demostrado resultados alentadores cuando han sido comparados con observaciones de espesor de nieve en fechas particulares. Esto es debido principalmente al importante control que ejerce la topografía en la distribución del manto de nieve a pequeña escala en zonas heterogéneas de montaña, la cual tiene una elevada consistencia inter e intra-anual.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abbas, F., Gascoin, S., Faour, G., López-Moreno, J.I., Drapeau, L., Michel Le Page, Escadafal, R. 2017. Snow hydrology in Mediterranean mountain regions: A review. Journal of Hydrology 551, 374-396. https://doi.org/10.1016/j.jhydrol.2017.05.063.

Alvera, B., Garcia-Ruiz, J.M. 2000. Variability of Sediment Yield from a High Mountain Catchment, Central Spanish Pyrenees. Arctic, Antarctic, and Alpine Resesearch 32, 478-484. https://doi.org/10.1080/15230430.2000.12003392.

Alvera, B., Del Barrio, G., Diez, J.C. 1991. The Izas Experimental Catchment, Central Pyrenees. Instituto Pirenaico de Ecología.

Anderton, S.P., White, S.M., Alvera, B. 2002. Micro-scale spatial variability and the timing of snow melt runoff in a high mountain catchment. Journal of Hydrology 268, 158-176.

Anderton, S.P., White, S.M., Alvera, B. 2004. Evaluation of spatial variability in snow water equivalent for a high mountain catchment. Hydrological Processes 18, 435-453. https://doi.org/10.1016/S0022-1694(02)00179-8.

Barnett, T.P., Adam, J.C., Lettenmaier, D.P. 2005. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438, 303-309. https://doi.org/10.1038/nature04141.

del Barrio, G., Alvera, B., Puigdefabregas, J., Diez, C. 1997. Response of high mountain landscape to topographic variables: Central Pyrenees. Landscape Ecology 12, 95-115. https://doi.org/10.1007/BF022698210.

Bartelt, P., Lehning, M. 2002. A physical SNOWPACK model for the Swiss avalanche warning: Part I: numerical model. Cold Regions Science and Technology 35, 123-145. https://doi.org/10.1016/S0165-232X(02)00074-5.

Charrois, L., Cosme, E., Dumont, M., Lafaysse, M., Morin, S., Libois, Q., Picard, G. 2016. On the assimilation of optical reflectances and snow depth observations into a detailed snowpack model. The Cryosphere 10, 1021-1038. https://doi.org/10.5194/tc-10-1021-2016.

Corripio, J.G. (2004). Snow surface albedo estimation using terrestrial photography. International Journal of Remote Sensing 25, 5705-5729. https://doi.org/10.1080/01431160410001709002.

De Michele, C.D., Avanzi, F., Passoni, D., Barzaghi, R., Pinto, L., Dosso, P., Ghezzi, A., Gianatti, R., Vedova, G.D. 2016. Using a fixed-wing UAS to map snow depth distribution: an evaluation at peak accumulation. The Cryosphere 10, 511-522. https://doi.org/10.5194/tc-10-511-2016.

Deems, J.S., Painter, T.H., Finnegan, D.C. 2013. Lidar measurement of snow depth: a review. Journal of Glaciology 59, 467-479. https://doi.org/10.3189/2013JoG12J154.

Dizerens, C. 2016. Georectification and snow classification of webcam images: potential for complementing satellite-derived snow maps over Switzerland. Master Thesis, University of Bern, 75 pp.

Dumont, M., Gascoin, S. 2016. 4 - Optical remote sensing of snow cover. In: N. Baghdadi, M. Zribi (Eds), Land surface remote sensing in continental hydrology. Elsevier, pp. 115-137. https://doi.org/10.1016/B978-1-78548-8.50004-8.

Erickson, T.A., Williams, M.W., Winstral, A. 2005. Persistence of topographic controls on the spatial distribution of snow in rugged mountain terrain, Colorado, United States. Water Resources Reearch 41 (4), 1-17. https://doi.org/10.1029/2003WR002973.

García-Ruiz, J.M., López-Moreno, J.I., Vicente-Serrano, S.M., Lasanta-Martínez, T., Beguería, S. 2011. Mediterranean water resources in a global change scenario. Earth-Science Reviews 105, 121-139. https://doi.org/10.1016/j.earscirev.2011.01.006.

Härer, S., Bernhardt, M., Corripio, J.G. Schulz, K. 2013. PRACTISE – Photo Rectification And ClassificaTIon SoftwarE (V.1.0). Geoscientific Model Development 6, 837-848. https://doi.org/10.5194/gmd-6-837-2013.

Herrero, J., Polo, M.J., Moñino, A., Losada, M.A. 2009. An energy balance snowmelt model in a Mediterranean site. Journal of Hydrology 371, 98-107. https://doi.org/10.1016/j.jhydrol.2009.03.021.

Jost, G., Weiler, M., Gluns, D.R., Alila, Y. 2007. The influence of forest and topography on snow accumulation and melt at the watershed-scale. Journal of Hydrology 347, 101-115. https://doi.org/10.1016/j.jhydrol.2007.09.006.

Jost, G., Dan Moore, R., Weiler, M., Gluns, D.R., Alila, Y. 2009. Use of distributed snow measurements to test and improve a snowmelt model for predicting the effect of forest clear-cutting. Journal of Hydrology 376, 94-106. https://doi.org/10.1016/j.jhydrol.2009.07.017.

Lana-Renault, N., Alvera, B., García-Ruiz, J.M. 2011. Runoff and Sediment Transport during the Snowmelt Period in a Mediterranean High-Mountain Catchment. Arctic, Antarctic and Alpine Research 43, 213-222. https://doi.org/10.1657/1938-4246-43.2.213.

López-Moreno, J.I., García-Ruiz, J.M. (2004). Influence of snow accumulation and snowmelt on streamflow in the central Spanish Pyrenees. Hydrological Sciences Journal 49, 787-802. https://doi.org/10.1623/hysj.49.5.787.55135.

López-Moreno, J.I., Beniston, M., García-Ruiz, J.M. 2008. Environmental change and water management in the Pyrenees: Facts and future perspectives for Mediterranean mountains. Global and Planetary Change 61, 300-312. https://doi.org/10.1016/j.gloplacha.2007.10.004.

López-Moreno, J.I., Latron, J., Lehmann, A. 2010. Effects of sample and grid size on the accuracy and stability of regression-based snow interpolation methods. Hydrological Processes 24, 1914-1928. https://doi.org/10.1002/hyp.7564.

López-Moreno, J.I., Fassnacht, S.R., Beguería, S., Latron, J.B.P. 2011. Variability of snow depth at the plot scale: implications for mean depth estimation and sampling strategies. The Cryosphere 5, 617-629. https://doi.org/10.5194/tc-5-617-2011.

López-Moreno, J.I., Pomeroy, J.W., Revuelto, J., Vicente-Serrano, S.M. 2012. Response of snow processes to climate change: spatial variability in a small basin in the Spanish Pyrenees. Hydrological Processes 27, 2637-2650. https://doi.org/10.1002/hyp.9408.

López-Moreno, J.I., Fassnacht, S.R., Heath, J.T., Musselman, K.N., Revuelto, J., Latron, J., Morán-Tejeda, E., Jonas, T. 2013. Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent. Adances in Water Resources 55, 40-52. https://doi.org/10.1016/j.advwatres.2012.08.010.

López-Moreno, J.I., Revuelto, J., Fassnacht, S.R., Azorín-Molina, C., Vicente-Serrano, S.M., Morán-Tejeda, E., Sexstone, G.A. 2014. Snowpack variability across various spatio-temporal resolutions. Hydrological Processes 29 (6), 1213-1224. https://doi.org(10.1002/hyp.10245.

López-Moreno, J.I., Revuelto, J., Rico, I., Chueca-Cía, J., Julián, A., Serreta, A., Serrano, E., Vicente-Serrano, S.M., Azorin-Molina, C., Alonso-González, E., García-Ruiz, J.M. 2016. Thinning of the Monte Perdido Glacier in the Spanish Pyrenees since 1981. The Cryosphere 10, 681-694. https://doi.org/10.5194/tc-10-681-2016.

López-Moreno, J.I., Revuelto, J., Alonso-González, E., Sanmiguel-Vallelado, A., Fassnacht, S.R., Deems, J., Morán-Tejeda, E. 2017. Using very long-range terrestrial laser scanner to analyze the temporal consistency of the snowpack distribution in a high mountain environment. Journal of Mountain Science 14, 823-842. https://doi.org/10.1007/s11629-016-4086-0.

Marti, R., Gascoin, S., Berthier, E., Pinel, M. de, Houet, T., Laffly, D. 2016. Mapping snow depth in open alpine terrain from stereo satellite imagery. The Cryosphere 10, 1361-1380. https://doi.org/10.5194/tc-10-1361-2016.

Mott, R., Schirmer, M., Bavay, M., Grünewald, T., Lehning, M. 2010. Understanding snow-transport processes shaping the mountain snow-cover. The Cryosphere 4, 545-559. https://doi.org/10.5194/tc-4-545-2010.

Mott, R., Gromke, C., Grünewald, T., Lehning, M. 2013. Relative importance of advective heat transport and boundary layer decoupling in the melt dynamics of a patchy snow cover. Advances in Water Resources 55, 88-97. https://doi.org/10.1016/j.advwatres.2012.03.001.

Pimentel, R., Herrero, J., Polo, M. 2017. Quantifying Snow Cover Distribution in Semiarid Regions Combining Satellite and Terrestrial Imagery. Remote Sensing 9, 995. https://doi.org/10.3390/rs9100995.

Pomeroy, J.W., Gray, D.M. 1995. Snowcover accumulation, relocation, and management. National Hydrology Research Institute Science Report No 7, Environment Canada: Saskatoon, SA, 134 pp.

Pomeroy, J., Essery, R., Toth, B. 2004. Implications of spatial distributions of snow mass and melt rate for snow-cover depletion: observations in a subarctic mountain catchment. Annals of Glaciology 38, 195-201. https://doi.org/10.3189/172756404781814744.

Prokop, A. 2008. Assessing the applicability of terrestrial laser scanning for spatial snow depth measurements. Cold Regions Science and Technology 54, 155-163. https://doi.org/10.1016/j.coldregions.2008.07.002.

Prokop, A. 2009. Terrestrial laser scanning for snow depth observations: An update on technical developments and applications. In: Proceedings of the International Snow Science Workshop, Davos, pp. 192-196.

Raleigh, M.S., Lundquist, J.D., Clark, M.P. 2015. Exploring the impact of forcing error characteristics on physically based snow simulations within a global sensitivity analysis framework. Hydrology and Earth System Sciences 19, 3153-3179. https://doi.org/10.5194/hess-19-3153-2015.

Revuelto, J., López-Moreno, J.I., Azorin-Molina, C., Vicente-Serrano, S.M. 2014a. Topographic control of snowpack distribution in a small catchment in the central Spanish Pyrenees: Intra- and inter-annual persistence. The Cryosphere 8, 1989-2006. https://doi.org/10.5194/tc-8-1989-2014.

Revuelto, J., López-Moreno, J.I., Azorin-Molina, C., Zabalza, J., Arguedas, G., Vicente-Serrano, S.M. 2014b. Mapping the annual evolution of snow depth in a small catchment in the Pyrenees using the long-range terrestrial laser scanning. Journal of Maps 10, 1-15. https://doi.org/10.1080/17445647.2013.869268.

Revuelto, J., López-Moreno, J.I., Azorin-Molina, C., Vicente-Serrano, S.M. 2015. Canopy influence on snow depth distribution in a pine stand determined from terrestrial laser data. Water Resources Research 51, 3476-3489. https://doi.org/10.1002/2014WR016496.

Revuelto, J., Vionnet, V., López-Moreno, J.I., Lafaysse, M., Morin, S. 2016a. Combining snowpack modeling and terrestrial laser scanner observations improves the simulation of small scale snow dynamics. Journal of Hydrology 533, 291-307. https://doi.org/10.1016/j.jhydrol.2015.12.015.

Revuelto, J., Jonas, T., López‐Moreno, J.I. 2016b. Backward snow depth reconstruction at high spatial resolution based on time-lapse photography. Hydrological Processes 30, 2976-2990. https://doi.org/10.1002/hyp.10.823.

Revuelto, J., Azorin-Molina, C., Alonso-González, E., Sanmiguel-Vallelado, A., Navarro-Serrano, F., Rico, I., López-Moreno, J.I. 2017. Meteorological and snow distribution data in the Izas Experimental Catchment (Spanish Pyrenees) from 2011 to 2017. Earth System Science Data 9, 993-1005. https://doi.org/10.5194/essd-9-993-2017.

Revuelto, J., Lecourt, G., Lafaysse, M., Zin, I., Charrois, L., Vionnet, V., Dumont, M., Rabatel, A., Six, D., Condom, T., Morin, S., Viani, A., Sirguey, P. 2018. Multi-criteria evaluation of snowpack simulations in complex alpine terrain using satellite and in situ observations. Remote Sensing 10 (8), 1171. https://doi.org/10.3390/re10081171.

Schirmer, M., Wirz, V., Clifton, A., Lehning, M. 2011. Persistence in intra-annual snow depth distribution: 1.Measurements and topographic control. Water Resources Research 47, W09516. https://doi.org/10.1029/2010WR009426.

Schön, P., Prokop, A., Vionnet, V., Guyomarc’h, G., Naaim-Bouvet, F., Heiser, M. 2015. Improving a terrain-based parameter for the assessment of snow depths with TLS data in the Col du Lac Blanc area. Cold Regions Science and Technology 114, 15-26. https://doi.org/10.1016/j.coldregions.2015.02.005.

Serrano, E., Agudo, C., Delaloyé, R., González-Trueba, J.J. 2001. Permafrost distribution in the Posets massif, Central Pyrenees. Nordisk Geografisk Tidsskrift / Nordic Journal of Geography 55, 245-252. https://doi.org/10.1080/00291950152746603.

Slater, A.G., Clark, M.P. 2006. Snow Data Assimilation via an Ensemble Kalman Filter. Journal of Hydrometeorology 7, 478-493. https://doi.org/10.1175/JHM505.1.

Sturm, M., Wagner, A.M. 2010. Using repeated patterns in snow distribution modeling: An Arctic example. Water Resources Resarch 46 (12). https://doi.org/10.1029/2010WR009434.

Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., Willemet, J.-M. 2012. The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2. Geosciences Model Development 5, 773-791. https://doi.org/10.5194/gmd-5-773-2012.

Vionnet, V., Dombrowski-Etchevers, I., Lafaysse, M., Quéno, L., Seity, Y., Bazile, E. 2016. Numerical Weather Forecasts at Kilometer Scale in the French Alps: Evaluation and Application for Snowpack Modeling. Journal of Hydrometeorology 17, 2591-2614. https://doi.org/10.1175/JHM-D-15-0241.1.

Watson, F.G.R., Anderson, T.N., Newman, W.B., Alexander, S.E., Garrott, R.A. 2006. Optimal sampling schemes for estimating mean snow water equivalents in stratified heterogeneous landscapes. Journal of Hydrology 328, 432-452. https://doi.org/10.1016/j.jhydrol.2005.12.032.

Winstral, A., Magnusson, J., Schirmer, M., Jonas, T. 2019. The Bias-Detecting Ensemble: A New and Efficient Technique for Dynamically Incorporating Observations Into Physics-Based, Multilayer Snow Models. Water Resources Research 55, 613-631. https://doi.org/10.1029/2018WR024521.

Wipf, S., Stoeckli, V., Bebi, P. 2009. Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Climatic Change 94, 105-121. https://doi.org/10.1007/s10584-009-9546-x.

Descargas

Publicado

2020-06-24

Cómo citar

1.
Revuelto J, Alonso-González E, López-Moreno J. Generación de mapas diarios de espesor de nieve a alta resolución espacial a partir de observaciones puntuales y fotografías automáticas diarias (time-lapse). CIG [Internet]. 24 de junio de 2020 [citado 22 de febrero de 2025];46(1):59-7. Disponible en: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/3801

Número

Sección

Artículos