Water repellency in forest soils affected by fires and agricultural soils with different agricultural management and abandonment

M. B. Bodí, A. Cerdà, J. Mataix-Solera, S. H. Doerr

Abstract


Soil water repellency determines the water available in the soil system, the runoff generation and the geomorphologic processes. This study examines the soil wettability during the summer of 2008 and 2009 in forest soils with different fire history, and in agricultural soils with different managements. Water repellency was assessed using the Water Drop Penetration Time test (WDPT). Results indicate that water repellency is more frequent and persistent in forest soils than in agricultural ones. In the former, water repellency is reduced a year after a fire and is not recovered during at least 12 years. In agricultural soils, it is found under no till treatment, whereas sites treated with herbicides or tillage were virtually unaffected. Water repellency is exhibited because of the increment of aboveground biomass and organic matter content as the vegetation is recovered following a wildfire or after abandoned crop fields, and after adding reaping or with green manure. In any case, water repellency levels are not either high or continuous enough to produce important runoff and erosion rates in the agricultural soils, although this can occur after forest fires if the soil it is not still protected by the vegetation recovery. Land abandonment trigger the water repellency on soils, and in our case fire reduce it for some years.

Keywords


Hydrophobicity; soil organic matter content; no till; forest fire; agricultural management

References


ARCENEGUI, V., MATAIX-SOLERA, J., GUERRERO, C., ZORNOZA, R., MAYORAL, A.M., MORALES, J., (2007). Factors controlling the water repellency induced by fire in calcareous Mediterranean forest soils, European Journal of Soil Science, 58: 1254-1259.

ARNÁEZ, J., LASANTA, T., ERREA, M.P., ORTIGOSA, L., (2011). Land abandonment, landscape evolution and soil erosion in a Spanish Mediterranean mountain región: the case of Camero Viejo. Land Degradation and Development, 22: 537-550.

BENTLEY, J.R., FENNER, R.L., (1958). Soil temperatures during burning related to postfire seedbeds on a woodland range, Journal of Forestry, 56: 737-740.

BISDOM, E.B.A., DEKKER, L.W., SCHOUTE, J.F.T., (1993). Water repellency of sieve fractions from sandy soils and relationships with organic material and structure, Geoderma, 56: 105-118.

BLACKWELL, P.S., (2000). Management of water repellency in Australia, and risks associated with preferential flow, pesticide concentration and leaching, Journal of Hydrology, 231-232: 384-395.

BLANCO-CANQUI, H., LAL, R., (2009). Extent of soil water repellency under long-term no-till soils, Geoderma, 149: 171-180.

BODÍ, M.B., CERDÀ, A., (2008). La estación experimental para el estudio y degradación de los suelos de el Teularet-Sierra de Enguera. En Erosión y degradación del suelo agrícola en España (Cerdà, A., Ed.). Cátedra de divulgación de la ciencia, Universitat de Valencia, Valencia, pp. 209-238.

CERDÀ, A., DOERR, S.H., (2005). Influence of vegetation recovery on soil hydrology and erodibility following fire: an 11-year investigation. International Journal of Wildland Fire, 14: 423-437.

CERDÀ, A., DOERR, S.H., (2007). Soil wettability, runoff and erodibility of major dry-Mediterranean land use types on calcareous soils. Hydrological Processes, 21: 2325-2336.

CERDÀ, A., BODÍ, M.B., (2008). Erosión y degradación de los suelos en los olivares del Macizo del Caroig. En La sustentabilidad del olivar en el macizo del Caroig. Prácticas sustentables y estrategia comercial de su aceite. Sociedad de Agricultura Ecológica del Macizo del Caroig, Macizo del Caroig Asociación, pp. 117-143.

CERDÀ, A., DOERR, S.H., (2008). The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period, Catena, 74: 256-263.

DEBANO, L.F., SAVAGE, S.M., HAMILTON, D.A., (1976). The transfer of heat and hydrophobic substances during burning. Soil Science Society of America Journal, 40: 779-782.

DEBANO, L.F., (1981). Water repellent soils: a state-of-the-art. United States Department of Agriculture, Pacific Southwest Forest and Range Experiment Station, Berkeley (California), 21 pp.

DEKKER, L.W., RITSEMA, C.J., (1994). How water moves in a water repellent sandy soil. 1. Potential and actual water repellency. Water Resources Research, 30: 2507-2517.

DEKKER, L.W., RITSEMA, C.J., WENDROTH, O., JARVIS, N., OOSTINDIE, K., POHL, W., LARSSON, M., GAUDET, J.P., (1999). Moisture distributions and wetting rates of soils at experimental fields in the Netherlands, France, Sweden and Germany. Journal of Hydrology, 215: 4-22.

DOERR, S.H., (1998). On standarizing the "Water Drop Penetration Time" and the "Molarity of an Ethanol Droplet" techniques to classify soil hydrophobicity: a case study using medium textured soils. Earth Surface Processes and Landforms, 23: 663-668.

DOERR, S.H., SHAKESBY, R.A., WALSH, R.P.D., (1998). Spatial variability of soil hydrophobicity in fire-prone eucaliptus and pine forests, Portugal. Soil Science, 14: 163.

DOERR, S.H., SHAKESBY, R.A., WALSH, R.P.D., (2000). Soil Water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth Science Reviews, 51: 33-65.

DOERR, S.H., THOMAS, A.D., (2000). The role of soil moisture in controlling water repellency: new evidence from forest soils in Portugal. Journal of Hydrology, 231-232: 134-147.

DOERR, S.H., MOODY, J.A., (2004). Hydrological impacts of soil water repellency: on spatial and temporal uncertainties. Hydrological Processes, 18: 829-832.

DOERR, S.H., SHAKESBY, R.A., DEKKER, L.W., RITSEMA, C.J., (2006). Occurrence, prediction and hydrological effects of water repellency amongst major soil and land-use types in a humid temperate climate. European Journal of Soil Science, 57: 741-754.

DOERR, S.H., SHAKESBY, R.A., (2009). Soil Water repellency. Principles, causes and relevance in fire-affected environments. En Efectos de los incendios forestales sobre los suelos en España (CERDÀ, A. Mataix-Solera, J., Eds.). Cátedra de divulgación de la ciencia. Universitat de Valencia, Valencia, pp. 57-75.

DOERR, S.H., SHAKESBY, R.A., MACDONALD, L.H., (2009). Soil Water repellency: A key factor in post-fire erosion. En Fire effects on Soils and Restoration Strategies. Land reconstruction and Management (Cerdà, A. Robichaud, P.R., Eds.). Science Publishers, pp. 373-398.

FRANCO, C.M.M., CLARKE, P.J., TATE, M.E., OADES, J.M., (2000). Hydrophobic properties and chemical characterisation of natural water repellent materials in Australian sands. Journal of Hydrology, 231-232: 47-58.

GARCÍA-ORENES, F., CERDÀ, A., MATAIX-SOLERA, J., GUERRERO, C., BODÍ, M.B., ARCENEGUI, V., ZORNOZA, R.,SEMPERE, J.G., (2009). Effects of agricultural management on surface soil properties and soil-water losses in eastern Spain, Soil and Tillage Research, 106: 117-123.

GARCÍA RUIZ, J. M., (2010). The effects of land uses on soil erosion in Spain: A review. Catena, 81: 1-11.

GARCÍA RUIZ, J.M, LASANTA, T., (1990). Land-use changes in the Spanish Pyrenees. Mountain Research and Development, 10: 267-279.

GARCÍA RUIZ, J.M., VALERO, B., (1998). Historical geomorphic processes and human activities in the Central Spanish Pyrenees. Mountain Research and Development, 18: 309-320.

GARCÍA RUIZ, J.M., LASANTA, T., ORTIGOSA, L., RUIZ FLAÑO, P., MARTÍ, C., GONZÁLEZ, C., (1995). Sediment yield under different land-uses in the Spanish Pyrenees. Mountain Research and Development, 15: 229-240.

GIOVANNINI, G., LUCCHESI, S., CERVELLY, S., (1987). The natural evolution of a burnt soil: a three-year investigation. Soil Science, 137: 220-226.

GIMÉNEZ MORERA, A., RUIZ-SINOGA, J.D., CERDÀ, A., (2010). The impact of cotton geotextiles on soil and water losses in Mediterranean rainfed agricultural land. Land Degradation and Development, 21: 210-217.

GONZÁLEZ-VILA, F.J., ALMENDROS, G., GONZALEZ-PEREZ, A., KNICKER, H., GONZÁLEZ-VAZQUEZ, R., HERNANDEZ, Z., PIEDRA-BUENA, A., DE LA ROSA, J.M., (2009). Transformaciones de la materia orgánica del suelo por incendios naturales y calentamientos controlados en condiciones de laboratorio. En Efectos de los incendios forestales sobre los suelos en España. Cátedra de divulgación de la ciencia (Cerdà, A., Mataix-Solera, J., Eds.). Universitat de Valencia, Valencia, pp. 219-267.

HALLETT, P.D., BAUMGARTL, T.,YOUNG, I.M., (2001). Subcritical water repellency of aggregates from a range of soil management practices. Soil Science Society of America Journal, 65: 184-190.

HUBBERT, K.R., ORIOL, V., (2005). Temporal fluctuations in soil water repellency following wildfire in chaparral steeplands, southern California. International Journal of Wildland Fire, 14: 439-117.

HUFFMAN, E.L., MACDONALD, L.H., STEDNICK, J.D., (2001). Strength and persistence of fire-induced soil hydrophobicity under ponserosa and lodgepole pine, Colorado Front Range. Hydrological Processes, 15: 2877-2892.

JAMISON, (1947). Resistance of wetting in the surface of sandy soils under citrus trees in central Florida and its effect upon penetration and the efficiency of irrigation. Soil Science Society of America Proceedings, 11: 103-109.

KEELEY, J.E., (2009). Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire, 18: 116-126.

KEIZER, J.J., DOERR, S.H., MALVAR, M.C., PRATS, S.A., FERREIRA, R.S.V., OÑATE, M.G., COELHO, C.O.A., FERREIRA, A.J.D., (2008). Temporal variation in topsoil water repellency in two recently burnt eucalypt stands in north-central Portugal. Catena, 74: 192-204.

LASANTA, T., VICENTE-SERRANO, S.M., (2007). Cambios en la cubierta vegetal en el Pirineo Aragonés en los últimos 50 años. Pirineos, 162: 125-1254

LASANTA, T., GARCÍA RUIZ, J.M., PÉREZ RONTOMÉ, C., SANCHO, C., (2000). Runoff and sediment yield in a semi-arid environment: The effect of land management after farmland abandonment. Catena, 38: 265-278.

LASANTA, T., PÉREZ RONTOMÉ, C., GARCÍA RUIZ, J.M., MACHÍN, J., NAVAS, A., (1995). Hydrological problems derived from farmland abandonment in semi-arid environments: The Central Ebro Depression. Physics and Chemistry of the Earth, 20: 309-314.

LEIGHTON-BOYCE, G., DOERR, S.H., SHAKESBY, R.A., WALSH, R.P.D., (2007). Quantifying the impact of soil water repellency on overland flow generation and erosion: a new approach using rainfall simulation and wetting agents on in situ soils. Hydrological Processes, 21: 2337-2345.

MACDONALD, L.H., HUFFMAN, E.L., (2004). Post-fire soil water repellency: persistence and soil moisture thresholds. Soil Science Society of America Journal, 68: 1729-2734.

MARINARI, S., MANCINELLI, R., CAMPIGLIA, E.,GREGO, S., (2006). Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy. Ecological Indicators, 6: 701-711.

MATAIX-SOLERA, J., DOERR, S.H., (2004). Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forests in southeastern Spain. Geoderma, 118: 77-88.

MATAIX-SOLERA, J., ARCENEGUI, V., GUERRERO, C., MAYORAL, A.M., MORALES, J., GONZÁLEZ, J., GARCÍA-ORENES, F.,GÓMEZ, I., (2007). Water repellency under different plant species in a calcareous forest soil in a semiarid Mediterranean environment. Hydrological Processes, 21: 2300-2309.

MATAIX-SOLERA, J., GARCÍA-IRLES, L., MORUGÁN, A., DOERR, S.H., GARCIA-ORENES, F., ARCENEGUI, V., ATANASSOVA I., (2011). Longevity of soil water repellency in a former wastewater disposal tree stand and potential amelioration. Geoderma, 165: 332-337

NEARY, D.G., KLOPATEK, C., C., DEBANO, L.F., FFOLLIOTT, P.F., (1999). Fire effects on belowground sustainability: a review and synthesis. Forest Ecology and Management, 122: 51-71.

NELSON, D.H.W., SOMMERS, L.E., (1982). Total carbon, organic carbon and organic matter. En Methods of soil analysis. Part II. Chemical and Microbiological Properties. (Page, A.L., Miller, R.H. Keeney, D.R., Eds.). American Society of Agronomy, Madison, WI, pp. 539-580.

RITSEMA, C.J., DEKKER, L.W., (2000). Preferential flow in water repellent sandy soils: principles and modeling implications. Journal of Hydrology, 231-232: 308-319.

SAVAGE, S.M., OSBORN, J., LETEY, J., HEATON, C., (1972). Substances contributing to fire-induced water repellency in soils. Proceedings of the Soil Science Society of America, 36: 674-678.

SHAKESBY, R.A., DOERR, S.H., WALSH, R.P.D., (2000). The erosional impact of soil hydrophobicity: current problems and future research directions. Journal of Hydrology, 231-232: 178-191.

SOIL SURVEY STAFF, (2006). Keys to Soil Taxonomy. United States Department of Agriculture, National Resources Conservation Services, Washington D.C.

TESSLER, N., WITTENBERG, L., MALKINSON, D., GREENBAUM, N., (2008). Fire effects and short-term changes in soil water repellency-Mt Carmel, Israel. Catena, 74: 185-191.

VICENTE SERRANO, S.M., LASANTA, T., CUADRAT, J.M., (2000). Transformaciones en el paisaje del Pirineo como consecuencia del abandono de las actividades económicas tradicionales. Pirineos, 155: 111-113.

WALLACH, R., BEN-ARIE, O., GRABER, E.R., (2005). Soil water repellency induced by long-term irrigation with treated sewage effluent. Journal of Environmental Quality, 34: 1910-1920.

YORK, C.A., (1993). A questionnaire survey of dry patch on golf courses in the United Kingdom. Journal of Sports Turf Research, 69: 20-26.

ZAVALA, L.M., GONZÁLEZ, F.A., JORDÁN, A. (2009). Intensity and persistence of water repellency in relation to vegetation types and soil parameters in Mediterranean SW Spain. Geoderma, 152: 361-374.




DOI: https://doi.org/10.18172/cig.1282

Copyright (c) 2013 M. B. Bodí, A. Cerdà, J. Mataix-Solera, S. H. Doerr

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

© Universidad de La Rioja, 2013

ISSN 0211-6820

EISSN 1697-9540