An extreme event between The Little Ice Age and the 20th century: the snow avalanche cycle of 1888 in the Asturian Massif (Northern Spain)

Authors

  • C. García-Hernández Universidad de Oviedo http://orcid.org/0000-0003-3003-9128
  • J. Ruiz-Fernández Universidad de Oviedo
  • C. Sánchez-Posada Universidad de Oviedo
  • S. Pereira Universidad de Oviedo
  • M. Oliva Universidad de Barcelona

DOI:

https://doi.org/10.18172/cig.3386

Keywords:

avalanche cycle, climate extremes, great blizzard, Little Ice Age, orographic precipitation, Cantabrian Mountains

Abstract

Between the late Little Ice Age (LIA) cold stage and the early 20th century warmer scenario, a transitional regime characterized by an unstable climatic pattern generated a series of climate extremes affecting mid-latitude mountainous areas, as the Asturian Massif. There, the 1888 snow avalanche cycle appears as the most significant event, standing out among the rest of avalanche cycles recorded in this area during the 1800-2015 period both in terms of the number of damaging avalanches and damages caused by them. Among the factors that explain this event stands out the orographic precipitation phenomenon; the interaction of a cold and wet air mass originating from the North Atlantic with the relief of the Massif, which led to extraordinary snow thicknesses (>2 m) at very low altitudes (500 m a.s.l.), especially in the north-facing, Asturian versant of the Cantabrian Mountains. This allowed the triggering of avalanches in slopes gentler and in lower altitudes than usual, covering longer distances; consequently, avalanches reached more easily the settlements, generally placed at the bottom of the valley or in middle slope positions. The greater impact on the settlements, which suffered 84% of the damages, was the cause of this episode’s high socioeconomic impact (29 people dead, 34 injured, 123 heads of cattle dead, 124 buildings destroyed). These events occurred at a time when the mountain villages were highly populated and subjected to intense exploitation, coinciding with the development of new communication infrastructures in the upper parts of the Massif. Therefore, the 1888 episode constitutes a good example of both the impact of hydrometeorological events in mountain environments under high demographic pressure, and of climate extremes involved in a transition period from cold to warmer weather conditions.

Downloads

Download data is not yet available.

Author Biography

C. García-Hernández, Universidad de Oviedo

Department of Geography (University of Oviedo)

References

Ammann, W.J. 2000. Der Lawinenwinter 1999. Ereignisanalyse. Winterberichte des Eidg Institutes für Schnee- und Lawinenforschung, 588.

Ancey, C., Charlier, C. 1998. Les avalanches. In: C. Ancéy (Ed.), Guide Neige et Avalanches: Connaissances, Pratiques, Sécurité. Édisud, Aix-en-Provence, pp. 87-126.

Baggi, S., Schweizer, J. 2009. Characteristics of wet-snow avalanche activity: 20 years of observations from a high alpine valley (Dischma, Switzerland). Natural Hazards 50 (1), 97- 108. https://doi.org/10.1007/s11069-008-9322-7.

Barriendos, M., Martín-Vide, J. 1998. Secular Climatic Oscillations as Indicated by Catastrophic Floods in the Spanish Mediterranean Coastal Area (14th-19th centuries). Climatic Change 38, 473-491. https://doi.org/10.1023/A:1005343828552.

Birkeland, K.W., Mock, C. J. 2001. The major snow avalanche cycle of February 1986 in the western United States. Natural Hazards 24 (1), 75-95. https://doi.org/10.1023/A:1011192619039.

Birkeland, K.W., Mock, C.J., Shinker, J.J. 2001. Avalanche extremes and atmospheric circulation patterns. Annals of Glaciology 32 135-140. https://doi.org/10.3189/17275640178119030.

Bradley, R.S. 1988. The explosive volcanic eruption signal in Northern Hemisphere continental temperature records. Climatic Change 12 (3), 221-243. https://doi.org/10.1007/BF00139431.

Brázdil, R., Pfister, C., Wanner, H., Von Storch, H., Luterbacher, J. 2005. Historical climatology in Europe–the state of the art. Climatic Change 70 (3), 363-430. https://doi.org/10.1007/ s10584-005-5924-1.

Burrows, R., McClung, D.M. 2006. Snow Cornice Development and Failure Monitoring. International Snow Science Workshop, Telluride, Colorado.

Coll, J.R., Aguilar, E., Prohom, M., Sigró, J. 2016. Long-term drought variability and trends in Barcelona (1787-2014). Cuadernos de Investigación Geográfica 42 (1), 29-48. https://doi. org/10.18172/cig.2927.

Corona, C., Lopez Saez, J., Stoffel, M., Bonnefoy, M., Richard, D., Astrade, L., Berger, F. 2012a. How much of the real avalanche activity can be captured with tree rings? An evaluation of classic dendrogeomorphic approaches and comparison with historical archives. Cold Regions Science and Technology 74, 31-42. https://doi.org/10.1016/j.coldregions.2012.01.003.

Corona, C., Lopez Saez, J., Stoffel, M., Rovéra, G., Edouard, J.-P., Berger, F. 2012b. Seven centuries of avalanche activity at Echalp (Queyras massif, southern French Alps) as inferred from tree rings. The Holocene 23, 292-304. https://doi.org/10.1177/0959683612460784.

De Quervain, M. 1972. Lawinenbildung. In: Lawinenschutz in der Schweiz, Bd. 9 der Reihe Bündnerwald, Beiheft, 15-32.

Eckert, N., Gaume, J., Castebrunet, H. 2011. Using spatial and spatial-extreme statistics to characterize snow avalanche cycles. Procedia Environmental Sciences 7, 224-229. https:// doi.org/10.1016/j.proenv.2011.07.039.

Eckerstorfer, M., Christiansen, H.H. 2011. Topographical and meteorological control on snow avalanching in the Longyearbyen area, central Svalbard 2006–2009. Geomorphology 134 (3), 186-196. https://doi.org/10.1016/j.geomorph.2011.07.001.

Esteban, P., Jones, P.D., Martín-Vide, J., Mases, M. 2005. Atmospheric circulation patterns related to heavy snowfall days in Andorra, Pyrenees. International Journal of Climatology 25 (3), 319-329. https://doi.org/10.1002/joc.11003.

Fagan, B. 2002. The Little Ice Age: How climate made History 1300-1850. Basic Books, New York.

Fischer, M., Lenggenhager, S., Auchmann, R., Stickler, A.N. (2013). Synoptic analysis of the New York March 1888 blizzard. In: S. Bronnimann, O. Martius (Eds.), Weather extremes during the past 140 years. Geographica Bernensia, pp. 45-52.

Fitzharris, B.B. 1987. A climatology of major avalanche winters in western Canada. Atmosphere- Ocean 25 (2), 115-136. https://doi.org/10.1080/07055900.1987.9649267.

Fitzharris, B.B., Bakkehøi, S. 1986. A synoptic climatology of major avalanche winters in Norway. International Journal of Climatology 6 (4), 431-446. https://doi.org/10.1002/joc.3370060408.

Fitzharris, B.B., Schaerer, P.A. 1980. Frequency of major avalanche winters. Journal of Glaciology 26 (94), 43-52. https://doi.org/10.1017/S0022143000010571.

Föhn, P. 1975. Analyse der Beziehungen zwischen Witterung, Schneedeckenaufbau und Großlawinen am Beispiel der Katastrophenlawinen vom April 1975, Winterberichte des Eidg Institutes für Schnee- und Lawinenforschung 39, 209-218.

Font-Tullot, I. 1988. Historia del clima de España. Cambios climáticos y sus causas. Instituto Nacional de Meteorología. Madrid.

Fuchs, S., Röthlisberger, V., Thaler, T., Zischg, A., Keiler, M. 2017. Natural Hazard Management from a Coevolutionary Perspective: Exposure and Policy Response in the European Alps. Annals of the American Association of Geographers 107 (2), 382-392. https://doi.org/10.10 80/24694452.2016.1235494.

García, C., Martí, G., Oller, P., Moner, I., Gavaldà, J., Martínez, P., Peña, J.C. 2009. Major avalanches occurrence at regional scale and related atmospheric circulation patterns in the Eastern Pyrenees. Cold Regions Science and Technology 59 (2), 106-118. https://doi. org/10.1016/j.coldregions.2009.07.009.

García-Fernández, J. 1980. Sociedad y organización tradicional del espacio en Asturias. Silverio Cañada, Gijón.

García-Hernández, C., Ruiz-Fernández, J., Sánchez-Posada, C., Pereira, S., Oliva, M., Vieira, G. 2017a. Reforestation and land use change as drivers for a decrease of avalanche damage in mid latitude mountains (NW Spain). Global and Planetary Change 153, 35-50. https://doi. org/10.1016/j.gloplacha.2017.05.001.

García-Hernández, C., Ruiz-Fernández, J., Pereira, S. 2017b. El efecto de los cambios en la cubierta vegetal sobre la evolución de los daños por aludes en el Macizo Asturiano. Cuaternario y Geomorfología 31 (3-4), 7-24.

García Hernández, C., Ruiz Fernández, J., Gallinar, D. 2016. Los efectos de las grandes nevadas históricas sobre la fauna en Asturias a través de la prensa. In: J. Gómez Zotano, J. Arias García, J.A. Olmedo Cobo, J.L. Serrano Montes (Eds.), Avances en Biogeografía. Áreas de distribución: entre puentes y barreras, Editorial Universidad de Granada, Tundra Ediciones, Granada, pp. 418-427.

García-Hernández, C., Ruiz-Fernández, J., Oliva, M., Gallinar, D. in press. El episodio de movimientos en masa asociado a los temporales de nieve de 1888, en el Macizo Asturiano. Boletín de la Asociación de Geógrafos Españoles.

García-Hernández, C., Ruiz-Fernández, J., Sánchez de Posada, C., Poblete, M.A. 2014. El impacto del episodio avalanchoso de 1888 en el Macizo Asturiano, a través de la prensa. In: A. Gómez- Ortiz, F. Salvador, M. Oliva, M. Salvá (Eds.), Avances, métodos y técnicas en el estudio del periglaciarismo, Universidad de Barcelona, Barcelona, pp. 55-64.

Gonzalo de Andrés, C. 2004. 1888: el año pasado por agua, Revista del Aficionado a la Meteorología 20, 1-11.

Guillet, S., Stoffel, M., Corona, C. 2016. Unveiling the avalanche activity in the Upper Goms Valley (Switzerland) over the past 400 years using tree-ring records. Conference INTERPRAEVENT, Lausane, Switzerland.

Hächler, P. 1987. Analysis of the weather situations leading to severe and extraordinary avalanche situations. IAHS Publication, 162, 295-304.

Haegeli, P., Haider, W., Longland, M., Beardmore, B. 2010. Amateur decision-making in avalanche terrain with and without a decision aid: a stated choice survey. Natural Hazards 52 (1), 185. https://doi.org/10.1007/s11069-009-9365-4.

Höller, P. 2007. Avalanche hazards and mitigation in Austria: a review. Natural Hazards 43, 81- 101. https://doi.org/10.1007/s11069-007-9109-2.

Höller, P. 2009. Avalanche cycles in Austria: an analysis of the major events in the last 50 years. Natural Hazards 48 (3), 399-424. https://doi.org/10.1007/s11069-008-9271-1.

Höller, P. 2017. Avalanche accidents and fatalities in Austria since 1946/47 with special regard to tourist avalanches in the period 1981/82 to 2015/16. Cold Regions Science and Technology. https://doi.org/10.1016/j.coldregions.2017.06.006.

Höller, P., Schaffhauser, H. 2000. The avalanches of Galtur and Valzur in February 1999, In: Proceedings of the International Snow Science Workshop, Big Sky, Montana, pp. 514-518.

Jomelli, V., Pech, P. 2004. Effects of the little ice age on avalanche boulder tongues in the French Alps (Massif des Ecrins). Earth Surface Processes and Landforms 29 (5), 553-564. https:// doi.org/10.1002/esp.1050.

Kocin, P.J. 1983. An Analysis of the “Blizzard of ‘88”. Bulletin of the American Meteorological Society 64 (11), 1258-1272. https://doi.org/10.1175/1520-0477(1983)064<1258:AAOTO>2 .0.Co;2.

Lockwood, M., Owens, M., Hawkins, E., Jones, G.S., Usoskin, I. 2017. Frost fairs, sunspots and the Little Ice Age. Astronomy & Geophysicsm 58 (2), 217-223. https://doi.org/10.1093/ astrogeo/atx057.

Luckman, B.H. 2000. The Little Ice Age in the Canadian Rockies, Geomorphology 32, 357-384. https://doi.org/10.1016/S0169-555X(99)00104-X.

López, B. 1981. Despoblamiento rural y cambios de población en el concejo de Ponga: (1875- 1976). Ería: Revista Cuatrimestral de Geografía 2, 3-26.

Maggioni, M., Gruber, U. 2003. The influence of topographic parameters on avalanche release dimension and frequency. Cold Regions Science and Technology, 37 (3), 407-419. https://doi. org/10.1016/S0165-232X(03)00080-6.

McCarroll, D., Matthews, J.A., Shakesby, R.A. 1995. Late-Holocene snow-avalanche activity in southern Norway: Interpreting lichen size-frequency distributions using an alternative to simulation modelling. Earth Surface Processes and Landforms 20, 465-471. https://doi. org/10.1002/esp.3290200507.

McClung, D., Schaerer, P.A. 2006. The avalanche handbook. The Mountaineers Books. Seattle. https://doi.org/10.1017/S0022143000001696.

McClung, D.M., Schweizer, J. 1999. Skier triggering, snow temperatures and the stability index for dry-slab avalanche initiation. Journal of Glaciology 45, 190-200.

Michaelis, A.C., Lackmann, G.M. 2013. Numerical modeling of a historic storm: simulating the Blizzard of 1888. Geophysical Research Letters 40 (15), 4092-4097. https://doi.org/10.1002/ grl.50750.

Mann, M.E., Zhang, Z., Rutherford, S., Bradley, R., Hughes, M.K., Shindell, D., Ammann, C., Faluvegi, G., Ni, F., 2009. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326, 1256-1260. https://doi.org/10.1126/ science.1177303.

Muñoz, J. 1982. Geografía Física. El relieve, el clima y las aguas. In: F. Quirós (Ed.), Geografía de Asturias I, Ayalga, Oviedo.

Oliva, M., Ruiz-Fernández, J., Barriendos, M., Benito, G., Cuadrat, J.M., García-Ruiz, J.M., Giralt, S., Gómez-Ortiz. A., Hernández, A., López-Costas, O., López-Moreno, J.I., López-Sáez, J.A., Martínez-Cortizas, A., Moreno, A., Prohom, M., Saz, M.A., Serrano, E., Tejedor, E., Trigo, R., Valero-Garcés, B. (2018). The Little Ice Age in Iberian mountains. Earth-Science Reviews 177, 175-208. http://doi.org/10.1016/j.earscirev.2017.11.010.

Oller, P., Muntán, E., García-Sellés, C., Furdada, G., Baeza, C., Angulo, C. 2015. Characterizing major avalanche episodes in space and time in the twentieth and early twenty-first centuries in the Catalan Pyrenees. Cold Regions Science and Technology 110, 129-148. https://doi. org/10.1016/j.coldregions.2014.11.012.

Perla, R.I. 1970. On contributory factors in avalanche hazard evaluation. Canadian Geotechnical Journal 7 (4), 414-419. https://doi.org/10.1139/t70-053.

Poggi, A., Plas, J. 1969. Conditions météorologiques critiques pour le déclenchement des avalanches. Symposium on snow avalanches, IAHS Publication, pp. 25-34.

Rebustiello, C. 2007. De nuestro corresponsal. Ediciones Novel, Oviedo.

Rodríguez, F. 1984. Transformación y crisis de un espacio de montaña: el Concejo de Lena. Ayuntamiento de Lena, Asturias.

Roveyaz, S., Debernardi, A., Ceaglio, E., Segor, V. 2013. The historical investigation as a tool to improve the hazard maps: the case study of the historical avalanche of Avieil (Valle d’Aosta- Italy). In: International Snow Science Workshop, Grenoble-Chamonix Mont-Blanc, France proceedings, pp. 639-645.

Schweizer, J., Kronholm, K., Wiesinger, T. 2003. Verification of regional snowpack stability and avalanche danger. Cold Regions Science and Technology 37 (3), 277-288. https://doi. org/10.1016/S0165-232X(03)00070-3.

Techel, F., Jarry, F., Kronthaler, G., Mitterer, S., Nairz, P., Pavšek, M., Valt, M., Darms, G. 2016. Avalanche fatalities in the European Alps: long-term trends and statistics. Geographica Helvetica 71 (2), 147-159. https://doi.org/10.5194/gh-71-147-2016.

Vogel, S., Eckerstorfer, M., Christiansen, H.H. 2012. Cornice dynamics and meteorological control at Gruvefjellet, Central Svalbard. The Cryosphere 6 (1), 157-171. https://doi.org/10.5194/tc- 6-157-2012.

Yanlong, W., Maoshuan, H. 1992. An outline of avalanches in the south-eastern Tibetan Plateau, China. Annals of Glaciology 16, 146-150. https://doi.org/10.1017/S0260305500004973.

Downloads

Published

20-02-2018

How to Cite

1.
García-Hernández C, Ruiz-Fernández J, Sánchez-Posada C, Pereira S, Oliva M. An extreme event between The Little Ice Age and the 20th century: the snow avalanche cycle of 1888 in the Asturian Massif (Northern Spain). CIG [Internet]. 2018 Feb. 20 [cited 2024 Apr. 25];44(1):187-212. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/3386

Issue

Section

Articles