Surveying topographical changes and climate variations to detect the urban heat island in the city of Málaga (Spain)

J.M. Senciales-González, J. Rodrigo-Comino, P. Smith

Abstract


The main aim of this research was to detect a possible urban heat island (UHI) in the tourist city of Málaga (Spain). To achieve this goal, different methods to validate annual and monthly temperature data have been used, and the internal variability of the UHI with respect to the topographical changes was also surveyed. Our results showed two types of atmospheric thermal gradients: one characterized by a positive gradient according to an elevation above sea level, and another with a negative gradient related to rural areas. The maximum impact of the UHI was found to be 9.1 ºC for an instantaneous event, 4.4 ºC for daily minimum temperatures in August, with a maximum weighted average difference of 2.3 ºC between data from urban and rural stations. We conclude that the detection of UHI is useful as a tool to help urban planners, in order to reduce the intensity of possible climate changes in cities. It is also concluded that UHI is not only a meteorological phenomenon in Málaga city but a climatic phenomenon, present during most days and across the transect of increasing intensity from the sea to the city.


Keywords


Climate observation; Urban development; Mitigation; Climate Policy; Urban Heat Islands

Full Text:

PDF

References


AEMET 2019. Guía resumida del clima en España (1981-2010). In: www.aemet.es.

AENA 2018. Estadísticas de tráfico aéreo. Available in http://www.aena.es/es/corporativa/estadisticas-trafico-aereo.html.

Aguilar-Anfrons, E., Brunet, M., Saladié-Borraz, Ò., Sigró-Rodríguez, J., López-Olivares, D. 2002. Hacia una aplicación óptima del Standard Normal Homogeneity Test para la homogeneización de series de temperatura. In: J.M. Cuadrat, S.M. Vicente, M.A. Saz (Eds.), La información climática como herramienta de gestión ambiental. VII Reunión Nacional de Climatología, pp. 17-34.

Alcoforado, M.J., Andrade, H. 2006. Nocturnal urban heat island in Lisbon (Portugal): main features and modelling attempts. Theoretical and Applied Climatology 84 (1), 151–159. https://doi.org/10.1007/s00704-005-0152-1.

Alexandersson, H. 2001. Homogenisation of climate data, difficult but necessary. In: M. Brunet, D. López Bonillo, Detecting and Modelling Regional Climate Change. Springer, Berlin, pp 3-12. https://doi.org/10.1007/978-3-662-04313-4_1.

Alexandersson, H., Moberg, A. 1997. Homogenization of Swedish temperature data. Part I: Homogeneity test for linear trends. International Journal of Climatology 17 (1), 25–34. https://doi.org/10.1002/(SICI)1097-0088(199701)17:1<25::AID-JOC103>3.0.CO;2-J.

Aniello, C., Morgan, K., Busbey, A., Newland, L. 1995. Mapping micro-urban heat islands using LANDSAT TM and a GIS. Computers & Geosciences 21 (8), 965–969. https://doi.org/10.1016/0098-3004(95)00033-5.

Ayuntamiento de Málaga. 2015. Territorio y configuración de la ciudad. Agenda urbana de Málaga, 2015. Área de Sostenibilidad Ambiental - Observatorio de Medio Ambiente Urbano (OMAU), 56 pp.

Bahi, H., Rhinane, H., Bensalmia, A., Fehrenbach, U., Scherer, D. 2017. Effects of urbanization and seasonal cycle on the surface urban heat island patterns in the coastal growing cities: A case study of Casablanca, Morocco. Remote Sensing 9 (1), 91. https://doi.org/10.3390/rs8100829.

Barrera-Escoda, A. 2004. Técnicas de completado de series mensuales y aplicación al estudio de la influencia de la NAO en la distribución de la precipitación en España. Universidad de Barcelona. Departamento de Astronomía y Meteorología. Grupo de Análisis de Situaciones Meteorológicas Adversas, 96 pp.

Barry, R.G., Chorley, R.J. 2009. Atmosphere, Weather and Climate. Ed. 1, Routledge, London - New York, 536 pp.

Bello Fuentes, V.B. 1994. La Isla de Calor y los Usos del Suelo en Guadalajara. Serie Geográfica, 4, 83–97.

Burke, E.J., Brown, S.J., Christidis, N. 2006. Modeling the Recent Evolution of Global Drought and Projections for the Twenty-First Century with the Hadley Centre Climate Model. Journal of Hydrometeorology 7, 1113-1125. https://doi.org/10.1175/JHM544.1.

Buyantuyev, A., Wu, J. 2010. Urban heat islands and landscape heterogeneity: linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landscape Ecology 25 (1), 17–33. https://doi.org/10.1007/s10980-009-9402-4.

Cao, C., Lee, X., Liu, S., Schultz, N., Xiao, W., Zhang, M., Zhao, L. 2016. Urban heat islands in China enhanced by haze pollution. Nature Communications 7, 12509. https://doi.org/10.1038/ncomms12509.

Capelli de Steffens, A.M., Campo de Ferreras, A.M., Piccolo, M.C. 2005. El clima urbano de Bahía Blanca. Ed. Dunken, 184 pp.

Chandler, T.J. 1965. The Climate of London. Hutchinson, 292 pp.

Chen, X., Jeong, S.-J. 2018. Shifting the urban heat island clock in a megacity: A case study of Hong Kong. Environmental Research Letters 13 (1), 014014. https://doi.org/10.1088/1748-9326/aa95fb.

Chen, X.-L., Zhao, H.-M., Li, P.-X., Yin, Z.-Y. 2006. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment 104 (2), 133–146. https://doi.org/10.1016/j.rse.2005.11.016.

Corumluoglu, O., Asri, I. 2015. The effect of urban heat island on Izmir’s city ecosystem and climate. Environmental Science and Pollution Research 22 (5), 3202–3211. https://doi.org/10.1007/s11356-014-2874-z.

Crawford, C.A.G. 2001. Geostatistics and Spatial Hierarchical Modeling (Interuniversity Consortium on Social and Political Research, University of Michigan). Workshop on Spatial Analysis in Social Research, National Center for Environmental Health, Centers for Disease Control and Prevention, pp. 1-27.

Domonkos, P., Štěpánek, P. 2009. Statistical characteristics of detectable inhomogeneities in observed meteorological time series. Studia Geophysica et Geodaetica 53 (2), 239–260. https://doi.org/10.1007/s11200-009-0015-9.

Edmondson, J.L., Stott, I., Davies, Z.G., Gaston, K.J., Leake, J.R. 2016. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs. Scientific Reports 6, 33708. https://doi.org/10.1038/srep33708.

Eischeid, J.K., Pasteris, P.A., Diaz, H.F., Plantico, M.S., Lott, N.J. 2000. Creating a Serially Complete, National Daily Time Series of Temperature and Precipitation for the Western United States. Journal of Applied Meteorology 39 (9), 1580–1591. https://doi.org/10.1175/1520-0450(2000)039<1580:CASCND>2.0.CO;2.

Farina, A. 2012. Exploring the relationship between land surface temperature and vegetation abundance for urban heat island mitigation in Seville, Spain. LUMA-GIS Thesi,. LUP Student Paper, Lund University, 15, 58 pp. Available in: http://lup.lub.lu.se/student-papers/record/3460284.

Fuller, R.A., Gaston, K.J. 2009. The scaling of green space coverage in European cities. Biological Letters, 5 (3), 352-355. https://doi.org/10.1098/rsbl.2009.0010.

García-Guadalupe, M., Ramírez-Sánchez, H.U., Ulloa-Godínez, H., Arias, S., Pérez, A. 2012. Las inversiones térmicas y la contaminación atmosférica en la Zona Metropolitana de Guadalajara (México). Investigaciones Geográficas 58, 9-29. https://doi.org/10.14198/INGEO2012.58.01.

Giovannini, L., Zardi, D., de Franceschi, M., Chen, F. 2014. Numerical simulations of boundary-layer processes and urban-induced alterations in an Alpine valley. International Journal of Climatology 34 (4), 1111–1131. https://doi.org/10.1002/joc.3750.

Goldreich, Y. 1984. Urban topoclimatology. Progress in Physical Geography: Earth and Environment 8 (3), 336–364. https://doi.org/10.1177/030913338400800302.

Gomes, W.P., Amorim, M.C. de C.T. 2015. Análisis de la isla de calor de superficie en la ciudad de Ubatuba, Brasil. In: J. Olcina, A.M. Rico, E. Molto (Eds.), Clima, sociedad, riesgos y ordenación del territorio. Asociación Española de Climatología, 121-130.

Gondhalekar, D., Ramsauer, T. 2017. Nexus City: Operationalizing the urban Water-Energy-Food Nexus for climate change adaptation in Munich, Germany. Urban Climate 19, 28–40. https://doi.org/10.1016/j.uclim.2016.11.004.

González-Hidalgo, J.C, De Luis, M., Štepánek, P., Raventós J. Cuadrat, J. M. 2002. Reconstrucción, estabilidad y proceso de homogeneización de series de precipitación en ambientes de elevada variabilidad pluvial. In: J.M. Cuadrat, S.M. Vicente, M.A. Saz (Eds), La información climática como herramienta de gestión ambiental. VII Reunión Nacional de Climatología, pp. 47-57.

Howard, L. 1818. The Climate of London: Deduced from Meteorological Observations, Made at Different Places in the Neighbourhood of the Metropolis. W. Phillips.

Hufty, A. 1975. Gradients verticaux de température et combinaisons des éléments du temps. Annales de géographie 84, 526–542.

Instituto de Estadística y Cartografía (IECA) 2018. Nomenclátor de entidades y núcleos de población de Andalucía. Junta de Andalucía. Available in: http://www.juntadeandalucia.es/institutodeestadisticaycartografia/nomenclator/index.htm.

Jendritzky, G., Tinz, B. 2009. The thermal environment of the human being on the global scale. Global Health Action 2, 1-12. https://doi.org/10.3402/gha.v2i0.2005.

Jhaldiyal, A., Gupta, K., Gupta, P.K., Thakur, P., Kumar, P. 2018. Urban Morphology Extractor: A spatial tool for characterizing urban morphology. Urban Climate 24, 237–246. https://doi.org/10.1016/j.uclim.2018.04.003.

Junta de Andalucía. 2018. "REDIAM". Subsistema de información de climatología ambiental (Clima). Available in: http://www.juntadeandalucia.es/medioambiente/servtc5/WebClima/?lr=lang_es.

Karl, T.R., Diaz, H.F., Kukla, G. 1988. Urbanization: Its detection and effect in the United States climate record. Journal of Climate 1 (11), 1099–1123. https://doi.org/10.1175/1520-0442(1988)001<1099:UIDAEI>2.0.CO;2.

Ketterer, C., Matzarakis, A. 2014. Human-biometeorological assessment of the urban heat island in a city with complex topography – The case of Stuttgart, Germany. Urban Climate 10, 573–584. https://doi.org/10.1016/j.uclim.2014.01.003.

Li, H., Meier, F., Lee, X., Chakraborty, T., Liu, J., Schaap, M., Sodoudi, S. 2018. Interaction between urban heat island and urban pollution island during summer in Berlin. Science of The Total Environment 636, 818–828. https://doi.org/10.1016/j.scitotenv.2018.04.254.

Lin, C.Y., Chen, F., Huang, J.C., Chen, W.C., Liou, Y.A., Chen, W.N., Liu, S.C. 2008. Urban heat island effect and its impact on boundary layer development and land–sea circulation over northern Taiwan. Atmospheric Environment 42 (22), 5635–5649. https://doi.org/10.1016/j.atmosenv.2008.03.015.

Lin, T.P., Matzarakis, A. 2008. Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. International Journal of Biometeorology 52 (4), 281–290. https://doi.org/10.1007/s00484-007-0122-7.

Lo, C.P., Quattrochi, D.A., Luvall, J.C. 1997. Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect. International Journal of Remote Sensing 18 (2), 287–304. https://doi.org/10.1080/014311697219079.

Marín-Cots, P., Sánchez-Teba, E.M., Molina-Conde, I. 2008. Aproximación al escenario de cambio climático en la ciudad de Málaga. Composición y estudio de series estadísticas. Ayuntamiento de Málaga. Servicio de Programas. Observatorio del Medio Ambiente Urbano, 35.

Martín-Vide, J., Sarricolea, P., Moreno-García, M.C. 2015. On the definition of urban heat island intensity: the “rural” reference. Frontiers in Earth Science 3 (24), 1-3. https://doi.org/10.3389/feart.2015.00024.

Mason, N.W.H., Palmer, D.J., Romera, A., Waugh, D., Mudge, P.L. 2017. Combining field experiments and predictive models to assess potential for increased plant diversity to climate-proof intensive agriculture. Ecology and Evolution 7 (13), 4907–4918. https://doi.org/10.1002/ece3.3028.

Matzarakis, A. 2014. Transfer of climate data for tourism applications - The Climate-Tourism/Transfer-Information-Scheme. Sustainable Environmental Research 24 (4), 273-280.

Mayer, H., Höppe, P. 1987. Thermal comfort of man in different urban environments. Theoretical and Applied Climatology 38 (1), 43–49. https://doi.org/10.1007/BF00866252.

McCarthy, M.P., Best, M.J., Betts, R.A. 2010. Climate change in cities due to global warming and urban effects. Geophysical Research Letters 37 (LO9705), 1–5. https://doi.org/10.1029/2010GL042845.

McKitrick, R.R., Michaels, P.J. 2007. Quantifying the influence of anthropogenic surface processes and inhomogeneities on gridded global climate data. Journal of Geophysical Research: Atmospheres 112 (D24S09), 1–14. https://doi.org/10.1029/2007JD008465.

Menberg, K., Bayer, P., Zosseder, K., Rumohr, S., Blum, P. 2013. Subsurface urban heat islands in German cities. Science of The Total Environment 442, 123–133. https://doi.org/10.1016/j.scitotenv.2012.10.043.

Miao, Y., Liu, S., Zheng, Y., Wang, S., Chen, B. 2015. Numerical Study of the Effects of Topography and Urbanization on the Local Atmospheric Circulations over the Beijing-Tianjin-Hebei, China. Advances in Meteorology 7, 1–16. https://doi.org/10.1155/2015/397070.

Mirón-Pérez, I.J., Montero-Rubio, J.C., Criado-Álvarez, J.J., Gutiérrez-Ávila, G., Paredes-Beato, D., Mayoral-Arenas, S., Linares-Gil, C. 2006. Tratamiento y estudio de series de temperatura para su aplicación en salud pública: El caso de Castilla-La Mancha. Revista Española de Salud Pública 80 (2), 113–124.

Moreno-García, M.C., Serra, J.A. 2016. El estudio de la isla de calor urbana en el ámbito mediterráneo: una revisión bibliográfica. Geocrítica, Biblio3W 2, 1–32.

Ningrum, W. 2018. Urban Heat Island towards Urban Climate. IOP Conference Series: Earth and Environmental Science 118, 1–6. https://doi.org/10.1088/1755-1315/118/1/012048.

Nouri, A.S., Costa, J.P., Matzarakis, A. 2017. Examining default urban-aspect-ratios and sky-view-factors to identify priorities for thermal-sensitive public space design in hot-summer Mediterranean climates: The Lisbon case. Building and Environment 126, 442–456. https://doi.org/10.1016/j.buildenv.2017.10.027.

Nouri, A.S., Costa, J.P. 2017. Placemaking and climate change adaptation: new qualitative and quantitative considerations for the “Place Diagram”. Journal of Urbanism: International Research on Placemaking and Urban Sustainability 10 (3), 356–382. https://doi.org/10.1080/17549175.2017.1295096.

Núñez-Peiró, M., Sánchez-Guevara, C., Neila-González, F.J. 2017. Actualización de la isla de calor urbana de Madrid y su influencia en la simulación energética de edificios. Actas 3er. Congreso Internacional de Construcción Sostenible y Soluciones Eco-Eficientes, pp. 890–901.

Oke, T.R. 1978. Boundary Layer Climates. Methuen, 372 pp.

Paulhus, J.L.H., Kohler, M.A. (1952). Interpolation of missing precipitation records. Monthly Weather Review 80 (8), 129–133. https://doi.org/10.1175/1520-0493(1952)080<0129:IOMPR>2.0.CO;2.

Pérez-González, M.E.P., García-Rodríguez, M.P., Guerra-Zaballos, A. 2003. Análisis del clima urbano a partir de imágenes de satélite en el centro peninsular español. Anales de Geografía de la Universidad Complutense 23, 187–206.

Peterson, T.C., Owen, T.W. (2005). Urban heat island assessment: Metadata are important. Journal of Climate 18 (14), 2637–2646. https://doi.org/10.1175/JCLI3431.1.

Prieto, L., García-Herrera, R., Díaz, J., Hernández, E., del Teso, T. 2004. Minimum extreme temperatures over Peninsular Spain. Global and Planetary Change 44 (1), 59–71. https://doi.org/10.1016/j.gloplacha.2004.06.005.

Rasilla-Álvarez, D.F. 2003. Aplicación de un método de clasificación sinóptica a la Península Ibérica. Investigaciones Geográficas 30, 27-45. https://doi.org/10.14198/INGEO2003.30.07.

Ribeiro, F.N.D., Oliveira, A.P. de, Soares, J., Miranda, R.M. de, Barlage, M., Chen, F. 2018. Effect of sea breeze propagation on the urban boundary layer of the metropolitan region of Sao Paulo, Brazil. Atmospheric Research 214, 174–188. https://doi.org/10.1016/j.atmosres.2018.07.015.

Rizwan, A.M., Dennis, L.Y.C., Liu, C. 2008. A review on the generation, determination and mitigation of Urban Heat Island. Journal of Environmental Sciences 20 (1), 120–128. https://doi.org/10.1016/S1001-0742(08)60019-4.

Rodrigo-Comino, J. 2012. Cuantificación de los gradientes térmicos a nivel superficial a lo largo del Rheinland-Pfalz (Renania-Palatinado, Alemania). Baetica, Estudios de Geografía e Historia 35, 75-97.

Rodrigo-Comino, J., Senciales-González, J.M., González-Moreno, J.M. 2014. La necesidad de considerar los riesgos climáticos en la introducción de cultivos tropicales en latitudes medias. El mango en el valle del Guadalhorce (Málaga). Investigaciones Geográficas 62, 127–141. https://doi.org/10.14198/INGEO2014.62.09.

Rodrigo-Comino, J., Senciales-González, J.M., Sillero-Medina, J.A., Gyasi-Agyei, Y., Ruiz-Sinoga, J.D., Ries, J. B. 2019. Analysis of weather-type-induced soil erosion in cultivated and poorly managed abandoned sloping vineyards in the Axarquía region (Málaga, Spain). Air, Soil and Water Research 12, 1–11. https://doi.org/10.1177/1178622119839403.

Ruiz-Sinoga, J.D., García-Marín, R., Martínez-Murillo, J.F., Gabarrón-Galeote, M.A. 2011. Precipitation dynamics in southern Spain: Trends and cycles. International Journal of Climatology 31 (15), 2281–2289. https://doi.org/10.1002/joc.2235.

Russo, A., Cirella, G.T. 2018. Modern Compact Cities: How Much Greenery Do We Need? Int J Environ Res Public Health 15 (10), 2180, 1–15. https://doi.org/10.3390/ijerph15102180.

Rutty, M., Scott, D. 2015. Bioclimatic comfort and the thermal perceptions and preferences of beach tourists. International Journal of Biometeorology 59 (1), 37–45. https://doi.org/10.1007/s00484-014-0820-x.

Salvati, A., Coch, H., Cecere, C. 2017. Assessing the urban heat island and its energy impact on residential buildings in Mediterranean climate: Barcelona case study. Energy and Buildings 146, 38-54. https://doi.org/10.1016/j.enbuild.2017.04.025.

Sánchez-Guevara Sánchez, C., Núñez Peiró, M. Neila González, F.J. 2017. Urban Heat Island and Vulnerable Population. The case of Madrid. In: P. Mercader Moyano (Ed.), Sustainable Development and Renovation in Arquitecture, Urbanism and Engineering. Springer International Publishing, Cham, Switzerland, pp. 3-13.

Schneider, T. 2001. Analysis of Incomplete Climate Data: Estimation of Mean Values and Covariance Matrices and Imputation of Missing Values. Journal of Climate 14 (5), 853–871. https://doi.org/10.1175/1520-0442(2001)014<0853:AOICDE>2.0.CO;2.

Senciales González, J.Mª. 2007. El clima en la provincia de Málaga. In: J.J. Durán Valsero (Coord.), Atlas Hidrogeológico de la provincia de Málaga, Instituto Geológico y Minero de España - Diputación provincial de Málaga, Madrid. Vol I, pp. 50-58.

Serra Pardo, J.A. 2007. Estudio de la isla de calor de la ciudad de Ibiza. Investigaciones Geográficas 44, 55–73.

Shimoda, Y. 2003. Adaptation measures for climate change and the urban heat island in Japan’s built environment. Building Research & Information 31 (3–4), 222–230. https://doi.org/10.1080/0961321032000097647.

Smart Data Málaga. Zonas verdes de Málaga. Datos de Calidad del Aire. Available at http://smartdatamalaga.com/zonas-verdes-malaga (last access: 18/01/2019).

Sobrino, J.A., Oltra-Carrió, R., Sòria, G., Jiménez-Muñoz, J.C., Franch, B., Hidalgo, V., Mattar, C., Julien, Y., Cuenca, J., Romaguera, M. Gómez, J.A., De Miguel, E., Bianchi, R., Paganini, M. 2013. Evaluation of the surface urban heat island effect in the city of Madrid by thermal remote sensing. International Journal of Remote Sensing 34, (9-10), 3177–3192. http://dx.doi.org/10.1080/01431161.2012.716548.

Stewart, I.D., Oke, T.R., Krayenhoff, E.S. 2014. Evaluation of the ‘local climate zone’ scheme using temperature observations and model simulations. International Journal of Climatology 34 (4), 1062–1080. https://doi.org/10.1002/joc.3746.

Suomi, J. 2014. Characteristics of urban heat island (UHI) in a high-latitude coastal city - a case study of Turku, SW Finland. Turku, 295, 9789512959112, 70 pp.

Tabony, R.C. 1985. Relations between minimum temperature and topography in Great Britain. Journal of Climatology 5 (5), 503–520. https://doi.org/10.1002/joc.3370050504.

Thompson, W.T., Holt, T., Pullen, J. 2007. Investigation of a sea breeze front in an urban environment. Quarterly Journal of the Royal Meteorological Society 133 (624), 579–594. https://doi.org/10.1002/qj.52.

Torok, S.J., Morris, C.J.G., Skinner, C., Plummer, N. 2001. Urban heat island features of southeast Australian towns. Australian Meteorological Magazine 50, 1–13.

Vicente-Serrano, S., Cuadrat-Prats, J.; Saz-Sánchez, M. 2005. Spatial patterns of the urban heat island in Zaragoza (Spain). Climate Research 30, 61–69.

WMO 2018. WMO confirms 2017 among the three warmest years on record. Available at https://public.wmo.int/en/media/press-release/wmo-confirms-2017-among-three-warmest-years-record (last access: 12/09/2018).

Zeleňáková, M., Purcz, P., Hlavatá, H., Blišťan, P. 2015. Climate Change in Urban Versus Rural Areas. Procedia Engineering, 119, 1171–1180. https://doi.org/10.1016/j.proeng.2015.08.968.




DOI: https://doi.org/10.18172/cig.4228

Copyright (c) 2020 J.M. Senciales-González, J. Rodrigo-Comino, P. Smith

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

© Universidad de La Rioja, 2013

ISSN 0211-6820

EISSN 1697-9540