Impacto de las olas de calor en el flujo de calor superficial latente y sensible y perspectivas de futuro para las lagunas someras basadas en modelos de cambio climático
DOI:
https://doi.org/10.18172/cig.4456Palabras clave:
flujo de calor sensible, flujo de calor latente, alta frecuencia, ola de calor, laguna somera, boya multi-paramétricaResumen
De acuerdo con las proyecciones de los modelos climáticos, se espera a nivel mundial un aumento en la frecuencia e intensidad de las olas de calor. Este estudio analiza, por primera vez, el efecto de los eventos de olas de calor en los flujos de calor latente (LE) y calor sensible (H) en dos lagunas someras: Laguna La Salada (LS - 39°27′ S, 62°42′ W) y Laguna Sauce Grande (SG - 38°57′ S, 61°24′ W). La velocidad y dirección del viento, la humedad relativa, y las diferencias de temperatura entre el aire y el agua determinaron los cambios en LE y H. Los valores diarios de ambas variables fueron altamente fluctuantes. Los valores medios diarios de H variaron entre -309,4 y 200,5 W m-2 y entre -78,6 y 104,8 W m-2 en LS y SG, respectivamente. Los valores medios diarios de LE variaron entre -152 y 463,9 W m-2 y entre -59,2 y 360,1 W m-2 en LS y SG, respectivamente. Ambos flujos disminuyeron con el paso de eventos de olas de calor, presentando una gran amplitud en los valores. En días con olas de calor comparados con días regulares se registraron cambios de hasta 96% en la media diaria de LE y 671% en la media diaria de H en LS y cambios de hasta 25% en la media diaria de LE y 987% en la media diaria de H para SG. Finalmente, se analizó el futuro incremento de la temperatura del aire para ambas lagunas bajo dos escenarios de calentamiento global (RCP 4.5 y RCP 8.5), que permiten deducir mayores amplitudes de cambio en ambos flujos de calor. Estos resultados contribuyen al desarrollo de modelos para lagunas someras, y a las decisiones de manejo de los recursos hídricos en el futuro.Descargas
Citas
Alfonso, M.B., Brendel, A.S., Vitale, A.J., Seitz, C., Piccolo, M.C., Eduardo Perillo, G.M. 2018. Drivers of ecosystem metabolism in two managed shallow lakes with different salinity and trophic conditions: The Sauce Grande and La Salada Lakes (Argentina). Water (Switzerland) 10 (9), 1136. https://doi.org/10.3390/w10091136.
Alfonso, M.B., Zunino, J., Piccolo, M.C. 2017. Impact of water input on plankton temporal dynamics from a managed shallow saline lake. Annales de Limnologie 53, 391-400. https://doi.org/10.1051/limn/2017023.
Aliaga, V.S., Ferrelli, F., Piccolo, M.C. 2017. Regionalization of climate over the Argentine Pampas. International Journal of Climatology 37, 1237-1247. https://doi.org/10.1002/joc.5079.
Arvola, L., George, G., Livingstone, D.M., Järvinen, M., Blenckner, T., Dokulil, M.T., Jennings E., Aonghusa, C.N., Nõges, P., Nõges, T., Weyhenmayer, G.A. 2009. The Impact of the Changing Climate on the Thermal Characteristics of Lakes. In: D.G. George (Ed.), The Impact of Climate Change on European Lakes, pp. 85-101. https://doi.org/10.1007/978-90-481-2945-4_6.
Barros, V.R., Boninsegna, J.A., Camilloni, I.A., Chidiak, M., Magrín, G.O., Rusticucci, M. 2015. Climate change in Argentina: Trends, projections, impacts and adaptation. Wiley Interdisciplinary Reviews: Climate Change 6 (2), 151-169. https://doi.org/10.1002/wcc.316.
Blanken, P.D., Rouse, W.R., Schertzer, W.M. 2003. Enhancement of evaporation from a large Northern Lake by the entrainment of warm, dry air. Journal of Hydrometeorology 4 (4), 680-693. https://doi.org/10.1175/1525-7541(2003)004<0680:EOEFAL>2.0.CO;2.
Base de Datos Climáticos 3ra. Comunicación Nacional de la República Argentina a la Convención Marco de las Naciones Unidas sobre Cambio Climático, Centro de Investigaciones del Mar y la Atmósfera, CIMA. http://3cn.cima.fcen.uba.ar (accessed 10 October, 2019).
Cook, B.I., Ault, T.R., Smerdon, J.E. 2015. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Science Advances 1 (1), 1-8. https://doi.org/10.1126/sciadv.1400082.
Davidson, T.A., Audet, J., Svenning, J.C., Lauridsen, T.L., Søndergaard, M., Landkildehus, F., larse, S.E., Jeppesen, E. 2015. Eutrophication effects on greenhouse gas fluxes from shallow-lake mesocosms override those of climate warming. Global Change Biology 21 (12), 4449-4463. https://doi.org/10.1111/gcb.13062.
Di Rienzo J.A., Casanoves F., Balzarini M.G., Gonzalez L., Tablada M., Robledo C.W. 2018. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar.
Diallo, I., Giorgi, F., Stordal, F. 2018. Influence of Lake Malawi on regional climate from a double-nested regional climate model experiment. Climate Dynamics 50 (9-10), 3397-3411. https://doi.org/10.1007/s00382-017-3811-x.
Diovisalvi, N., Salcedo Echeverry, G.E., Lagomarsino, L., Zagarese, H.E. 2015. Seasonal patterns and responses to an extreme climate event of rotifers community in a shallow eutrophic Pampean lake. Hydrobiologia 752 (1), 125-137. https://doi.org/10.1007/s10750-014-1909-2.
Downing, J.A., Prairie, Y.T., Cole, J.J., Duarte, C.M., Tranvik, L.J., Striegl, R.G., et al. 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography 51 (5), 2388-2397. https://doi.org/10.4319/lo.2006.51.5.2388.
Estación de Monitoreo Ambiental Costero, EMAC https://www.emac.iado-conicet.gob.ar/2019 (accessed 10 October 2019).
Fink, G., Schmid, M., Wüest, A. 2014. Large lakes as sources and sinks of anthropogenic heat: Capacities and limits. Water Resources Research 50 (9), 7285-7301. https://doi.org/10.1002/2014WR015509.
Fusé, V.S., Priano, M.E., Williams, K.E., Gere, J.I., Guzmán, S.A, Gratton, R., Juliarena, M.P. 2016. Temporal variation in methane emissions in a shallow lake at a southern mid latitude during high and low rainfall periods. Environmental Monitoring and Assessment 188, 590. https://doi.org/10.1007/s10661-016-5601-z.
Gao, Y., Fu, J.S., Drake, J.B., Liu, Y., Lamarque, J.F. 2012. Projected changes of extreme weather events in the eastern United States based on a high resolution climate modeling system. Environmental Research Letters 7 (4), 12 p. https://doi.org/10.1088/1748-9326/7/4/044025.
Geraldi, A, Piccolo, M.C, Perillo, G.M.E. 2011. El rol de las lagunas bonaerenses en el paisaje pampeano. Ciencia Hoy 21 (123), 16-22. Retrieved from https://ri.conicet.gov.ar/handle/11336/21369.
Havens, K., Paerl, H., Phlips, E., Zhu, M., Beaver, J., Srifa, A. 2016. Extreme weather events and climate variability provide a lens to how shallow lakes may respond to climate change. Water (Switzerland) 8 (6), 229. https://doi.org/10.3390/w8060229.
Huamantinco Cisneros, M. A., Piccolo, M.C. 2011. Caracterización de la brisa de mar en el balneario de Monte Hermoso, Argentina. Estudios Geográficos 72 (271), 461-475. https://doi.org/10.3989/estgeogr.201118.
Instituto Nacional de Tecnología Agropecuaria, INTA https://www.argentina.gob.ar/inta (accessed 10 October 2019).
IPCC, I. P. on C.C. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III.
Kendall, M. G. 1975. Rank Correlation Measures; Charles Griffin. London, 202 p.
Kraemer, B.M., Chandra, S., Dell, A.I., Dix, M., Kuusisto, E., Livingstone, D.M., Schladow, S.G., Silow, E., Sitoki, L.M., Tamatamah, R., McIntyre, P.B. 2017. Global patterns in lake ecosystem responses to warming based on the temperature dependence of metabolism. Global Change Biology 23 (5), 1881-1890. https://doi.org/10.1111/gcb.13459.
Lagomarsino, L., Pérez, G.L., Escaray, R., Bustingorry, J., Zagarese, H.E. 2011. Weather variables as drivers of seasonal phosphorus dynamics in a shallow hypertrophic lake (Laguna Chascomús, Argentina). Fundamental and Applied Limnology 178 (3), 191-201. https://doi.org/10.1127/1863-9135/2011/0178-0191.
Leira, M., Cantonati, M. 2008. Effects of water-level fluctuations on lakes: An annotated bibliography. Hydrobiologia 613, 171-184). https://doi.org/10.1007/s10750-008-9465-2.
Li, Z., Lyu, S., Ao, Y., Wen, L., Zhao, L., Wang, S. 2015. Long-term energy flux and radiation balance observations over Lake Ngoring, Tibetan Plateau. Atmospheric Research 155, 13-25. https://doi.org/10.1016/j.atmosres.2014.11.019.
Liu, H. P., Zhang, Q. Y., Dowler, G. 2012. Environmental controls on the surface energy budget over a large southern inland water in the United States: An analysis of one-year eddy covariance flux data. Journal of Hydrometeorology 13, 1893-1910. https://doi:10.1175/jhm-d-12-020.1.
Long, Z., Perrie, W., Gyakum, J., Caya, D., Laprise, R. 2007. Northern lake impacts on local seasonal climate. Journal of Hydrometeorology 8, 881-896. https://doi:10.1175/jhm591.1.
Mann, H. B. 1945. Non-parametric Tests Against Trend. Econometrica 13 (3), 245. https://doi.org/10.2307/1907187.
Oki, T., Kanae, S. 2006. Global hydrological cycles and world water resources. Science 313, 1068-1072. https://doi:10.1126/science.1128845.
Pohlert, T. 2018. Non-Parametric Trend Tests and Change-Point Detection, 1-18. http://docplayer.net/70194145-Non-parametric-trend-tests-and-change-point-detection.html.
Rennella, A., Quirós, R. 2006. The Effects of Hydrology on Plankton Biomass in Shallow Lakes of the Pampa Plain. Hydrobiologia 556, 181-191. https://doi.org/10.1007/s10750-005-0318-y.
Rouse, W.R., Oswald, C.M., Binyamin, J., Blanken, P.D., Schertzer, W.M., Spence, C. 2003. Interannual and seasonal variability of the surface energy balance and temperature of central Great Slave Lake. Journal of Hydrometeorology 4 (4), 720-730. https://doi.org/10.1175/1525-7541(2003)004<0720:IASVOT>2.0.CO;2.
Rusticucci, M., Kyselý, J., Almeira, G., Lhotka, O. 2016. Long-term variability of heat waves in Argentina and recurrence probability of the severe 2008 heat wave in Buenos Aires. Theoretical and Applied Climatology 124 (3-4), 679-689. https://doi.org/10.1007/s00704-015-1445-7.
Sen, P.K. 1968. Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association 63 (324), 1379-1389. https://doi.org/10.1080/01621459.1968.10480934.
Servicio Meteorológico Nacional, SMN https://www.smn.gob.ar/ (accessed 10 October 2019).
Shao, C., Chen, J., Stepien, C.A., Chu, H., Ouyang, Z., Bridgeman, T.B., Czajkowski, K.P., Becker, R.H., John, R. 2015. Diurnal to annual changes in latent, sensible heat, and CO2 fluxes over a Laurentian Great Lake: A case study in Western Lake Erie. Journal of Geophysical Research G: Biogeosciences 120 (8), 1587-1604. https://doi.org/10.1002/2015JG003025.
Tranvik, L.J., Downing, J.A., Cotner, J.B., Loiselle, S.A., Striegl, R.G., Ballatore, T.J., et al. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography 54 (6 PART 2), 2298-2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298.
Winder, M., Schindler, D.E. 2004. Climatic effects on the phenology of lake processes. Global Change Biology 10 (11), 1844-1856. https://doi.org/10.1111/j.1365-2486.2004.00849.x.
Woolway, R.I., Jones, I.D., Feuchtmayr, H., Maberly, S.C. 2015a. A comparison of the diel variability in epilimnetic temperature for five lakes in the English Lake District. Inland Waters 5 (2), 139-154. https://doi.org/10.5268/IW-5.2.748.
Woolway, R.I., Jones, I.D., Hamilton, D.P., Maberly, S.C., Muraoka, K., Read, J.S., Smyth, R.L., Winslow, L.A. 2015b. Automated calculation of surface energy fluxes with high-frequency lake buoy data. Environmental Modelling and Software 70, 191-198. https://doi.org/10.1016/j.envsoft.2015.04.013.
Woolway, R. I., Verburg, P., Lenters, J. D., Merchant, C. J., Hamilton, D. P., Brookes, J., et al. 2018. Geographic and temporal variations in turbulent heat loss from lakes: A global analysis across 45 lakes. Limnology and Oceanography 63 (6), 2436-2449. https://doi.org/10.1002/lno.10950.
Wüest, A., Lorke, A. 2003. Small-scale hydrodynamics in lakes. Annual Review of Fluid Mechanics 35 (1), 373-412. https://doi.org/10.1146/annurev.fluid.35.101101.161220.
Zhang, Q., Liu, H. 2013. Interannual variability in the surface energy budget and evaporation over a large southern inland water in the United States. Journal of Geophysical Research Atmospheres 118 (10), 4290-4302. https://doi.org/10.1002/jgrd.50435.
Zhao, X., Liu, Y. 2018. Variability of Surface Heat Fluxes and Its Driving Forces at Different Time Scales Over a Large Ephemeral Lake in China. Journal of Geophysical Research: Atmospheres 123 (10), 4939-4957. https://doi.org/10.1029/2017JD027437.
Zhu, C., Zeng, Y. 2018. Effects of urban lake wetlands on the spatial and temporal distribution of air PM10 and PM2.5 in the spring in Wuhan. Urban Forestry and Urban Greening 31, 142-156. https://doi.org/10.1016/j.ufug.2018.02.008.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
El autor o autora conserva todos los derechos sobre su artículo y cede a la revista el derecho de la primera publicación, no siendo necesaria la autorización de la revista para su difusión una vez publicado. Una vez publicada la versión del editor el autor está obligado a hacer referencia a ella en las versiones archivadas en los repositorios personales o institucionales.
El artículo se publicará con una licencia Creative Commons de Atribución, que permite a terceros utilizar lo publicado siempre que se mencione la autoría del trabajo y la primera publicación en esta revista.
Se recomienda a los autores/as el archivo de la versión de editor en repositorios institucionales.