Análisis multiescala para estudiar procesos geomorfológicos en un área acarcavada de ambientes semiáridos (Depresión del Ebro, España)

Autores/as

  • V. Ferrer Departamento de Geografía y Ordenación del Territorio, Facultad de Filosofía y Letras, Instituto de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza
  • P. Errea Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC), Campus de Aula Dei, Apartado 13034, 50080 Zaragoza
  • E. Alonso Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC), Campus de Aula Dei, Apartado 13034, 50080 Zaragoza
  • E. Nadal-Romero Departamento de Geografía y Ordenación del Territorio, Facultad de Filosofía y Letras, Instituto de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, 50009 Zaragoza
  • A. Gómez-Gutiérrez Grupo de Investigación GeoAmbiental (GIGA), Área de Geografía Física, Facultad de Filosofía y Letras, Universidad de Extremadura, Cáceres

DOI:

https://doi.org/10.18172/cig.3139

Palabras clave:

badlands, piping, escáner láser terrestre, fotogrametría SfM, dron

Resumen

En este trabajo, se evalúan y comparan tres métodos no-invasivos: (i) escáner láser terrestre (TLS), (ii) fotogrametría terrestre y técnicas Structure from Motion (SfM), y (iii) fotogrametría aérea y técnicas SfM a partir de imágenes capturadas con un dron (UAV), para producir nubes de puntos de alta resolución y crear modelos digitales de elevaciones (DEM) en badlands semiáridos muy complejos y con cierta actividad turística (Los Aguarales). Se analizaron los procesos y dinámicas geomorfológicas a diferentes escalas espaciales. Los resultados preliminares demostraron las posibilidades de un enfoque multiescalar, utilizando diferentes técnicas no invasivas, para evaluar diferentes procesos geomorfológicos. La alta resolución de las nubes de puntos, obtenidas con el TLS y la fotogrametría terrestre (SfM), ha permitido identificar numerosos detalles espaciales. Sin embargo, en el periodo de estudio (una primavera húmeda con un registro de precipitación de 200 mm) no se han registrado importantes cambios topográficos. Por otro lado, las imágenes obtenidas con el dron y las técnicas fotogramétricas permitieron cartografiar los pipes en la zona de estudio y confirman la viabilidad de esta herramienta para estudiar superficies de mayor tamaño en un corto periodo de tiempo. El uso de tecnologías no invasivas y un enfoque multiescalar para generar DEMs de alta resolución es una perspectiva adecuada y ventajosa para llevar a cabo estudios geomorfológicos en zonas de cárcavas semiáridas. Sin embargo, son necesarios estudios de mayor duración que nos permitan verificar la idoneidad de estas técnicas en paisajes complejos, y cuantificar los cambios topográficos y las tasas de erosión. Por último, destacar que los resultados obtenidos con estas nuevas herramientas podrían ser utilizados para promocionar el área de estudio como lugar de interés geomorfológico y turístico.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ballesteros, J.A., Corona, C., Stoffel, M., Lucía-Vela, A., Bodoque, J.M. 2015. Combining terrestrial laser scanning and root exposure to estimate erosion rates. Plant and Soil 394 (1-2), 127-137. DOI: http://doi.org/10.1007/s11104-015-2516-3.

Bechet, J., Duc, J., Jaboyedoff, M., Loye, A., Mathys, N. 2015. Erosion processes in black marl soils at the millimetre scale: preliminary insights from an analogous model. Hydrological Earth System Science 19, 1849-1855. DOI: http://doi.org/10.5194/hess-19-1849-2015.

Bernatek-Jakiel, A., Kacprzak, A., Stolarczyk, M. 2016. Impact of soil characteristics on piping activity in a mountainous area under a temperate climate (Bieszczady Mts., Eastern Carpathians). Catena 141, 117-129. DOI: http://doi.org/10.1016/j.catena.2016.03.001.

Bernatek-Jakiel, A., Kondracka, M. 2016. Combining geomorphological mapping and near surface geophysics (GPR and ERT) to study piping systems. Geomorphology 274, 193-209. DOI: http://doi.org/10.1016/j.geomorph.2016.09.018.

Bocco, G. 1991. Gully erosion, processes and models. Progress in Physical Geography 15, 392-406. DOI: http://doi.org/10.1177/030913339101500403.

Brasington, J., Vericat, D., Rychkov, I. 2012. Modelling river bed morphology, roughness, and surface sedimentology using high resolution terrestrial laser scanning. Water Resources Research 47, W11519. DOI: 10.1029/2012WR012223.

Bryan, R.B., Yair, A. (Eds.) 1982. Badland Geomorphology and Piping. GeoBooks, Norwich (408 pp.).

Calvo-Cases, A., Boix-fayos, C., Arnau-Rosalen, E., Roxo, M.J. 2011. Gullies and rills on sodic soils. Petrer (Alicante, Spain). Cuadernos de Investigación Geográfica 37 (1), 25-40. DOI: http://doi.org/10.18172/ cig.1244.

Cammeraat, E.L.H. 2004. Scale dependent thresholds in hydrological and erosion response of a semi-arid catchment in Southeast Spain. Agriculture, Ecosystems and Environment 104, 317-332. DOI: http://doi.org/10.1016/j.agee.2004.01.032.

Castillo, C., Pérez, R., James, M.R., Quinton, J.N., Taguas, E.V., Gómez, J.A. 2012. Comparing the accuracy of several field methods for measuring gully erosion. Soil Science Society of America Journal 76 (4), 1319-1332. DOI: http://doi.org/10.2136/sssaj2011.0390.

Castillo, C., James, M.R., Redel-Macías, M.D., Pérez, R., Gómez, J.A. 2015. SF3M software: 3-D photo-reconstruction for non-expert users and its application to a gully network. SOIL 1, 583-594. DOI: http://doi.org/10.5194/soil-1-583-2015.

Church, M. 2010. The trajectory of geomorphology. Progress in Physical Geography 34, 265-286. DOI: http://doi.org/10.1177/0309133310363992.

Desir, G., Marín, C. 2011. Influence of piping processes on the relief evolution. Bardenas Reales (Navarra, Spain). Cuadernos de investigación Geográfica 37 (1), 67-78. DOI: http://doi.org/10.18172/cig.1246.

Desir, G., Marín, C. 2013. Role of erosion processes on the morphogenesis of a semiarid badland area. Bardenas Reales (NE Spain). Catena 106, 83-92. DOI: http://doi.org/10.1016/j.catena.2013.02.011.

D’Oleire-Oltmanns, S., Marzolff, I., Peter, K., Ries, J. 2012. Unmanned Aerial Vehicle (UAV) for Monitoring Soil Erosion in Morocco. Remote Sensing 4 (12), 3390-3416. DOI: http://doi.org/10.3390/rs4113390.

Eltner, A., Baumgart, P. 2015. Accuracy constraints of terrestrial Lidar data for soil erosion measurement: application to a Mediterranean field plot. Geomorphology 245, 243-254. DOI: http://doi.org/10.1016/j.geomorph.2015.06.008.

Eltner, A., Baumgart, P., Maas, H.G., Faust, D. 2015. Multi-temporal UAV data for automatic measurement of rill and interrill erosion on loess soil. Earth Surface Processes and Landforms 40, 741-755. DOI: http://doi.org/10.1002/esp.3673.

Eltner, A., Kaiser, A., Castillo, C., Rock, G., Neugirg, F., Abellán, A. 2016a. Image-based surface reconstruction in geomorphometry-merits, limits and developments. Earth Surface Dynamics 4 (2), 359-389. DOI: http://doi.org/10.5194/esurf-4-359-2016.

Eltner, A., Schneider, A., Maas, H.G. 2016b. Integrated processing of high resolution topographic data for soil erosion assessment considering data acquisition schemes and surface properties. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, XLI-B5, 813-819.

Faulkner, H. 2013. Badlands in marl lithologies: A field guide to soil dispersion, subsurface erosion and piping-origin gullies. Catena 106, 42-53. DOI: http://doi.org/10.1016/j.catena.2012.04.005.

Faulkner, H., Alexander, R., Teeuw, R., Zukovskyj, P. 2004. Variations in soil dispersivity across a gully head displaying shallow subsurface pipes. Earth Surface Processes and Landforms 29, 1143-1160. DOI: http://doi.org/10.1002/esp.1109.

Ferrer, V. 2016. Estudio geomorfológico en los badlands de los Aguarales de Valpalmas (Zaragoza) mediante la aplicación de nuevas tecnologías. Unpublished Master Thesis.

Gallart, F., Marignani, M., Pérez-Gallego, N., Santi, E., Maccherini, S. 2013. Thirty years of studies on badlands, from physical to vegetational approaches. A succinct review. Catena 106, 4-11. DOI: http://doi.org/10.1016/j.catena.2012.02.008.

García-Ruiz, J.M. 2011. Una revisión de los procesos de sufosión o piping en España. Cuadernos de Investigación Geográfica 37 (1), 7-23. DOI: http://doi.org/10.18172/cig.1243.

García-Ruiz, J.M. 2015. Why geomorphology is a global science. Cuadernos de Investigación Geográfica 41 (1), 87-105. DOI: http://doi.org/10.18172/cig.2652.

García Ruiz, J.M., López-Bermúdez, F. 2009. La erosión del suelo en España. Sociedad Española de Geomorfología, Zaragoza, 441 pp.

García-Ruiz, J.M., Nadal-Romero, E., Lana-Renault, N., Beguería, S. 2013. Erosion in Mediterranean landscapes: changes and future challenges. Geomorphology 198, 20-36. DOI: http://doi.org/10.1016/j. geomorph.2013.05.023.

García-Ruiz, J.M., Beguería, S., Nadal-Romero, E., González-Hidalgo, J.C., Lana-Renault, N., Sanjuán, Y. 2015. A meta-analysis of soil erosion rates across the world. Geomorphology 239, 160-173. DOI: http://doi.org/10.1016/j.geomorph.2015.03.008.

García-Ruiz, J.M., Beguería, S., Lana-Renault, N., Nadal-Romero, E., Cerdà, A. 2017. Ongoing and emerging questions in water erosion studies. Land Degradation & Development 28, 5-21. DOI: http://doi.org/10.1002/ldr.2641.

Girardeau-Montaut, D., Roux, R.M., Thibault, G. 2005. Change detection on points cloud data acquired with a ground laser scanner. In: Workshop Laser Scanning 2005, ISPRS, Enschede, 6 pp.

Gómez-Gutiérrez, A., Schnabel, S., Berenguer-Sempere, F., Lavado-Contador, F., Rubio-Delgado, J. 2014. Using 3D photo-reconstruction methods to estimate gully headcut erosion. Catena 120, 91-101. DOI: http://doi.org/10.1016/j.catena.2014.04.004.

Gómez-Gutiérrez, A., Schnabel, S., Conoscenti, C., Caraballo-Arias, N.A., Ferro, V., Di Stefano, C., Blasco Sanjosé, J.J., Angileri, S.E., De Matías, J., Berenguer-Sempere, F. 2016. Production of 3D models for different morphologies and scales using structure from motion techniques and terrestrial pictures. Cuaternario y Geomorfología 30 (2), 23-35. DOI: http://doi.org/10.17735/cyg.v30i1-2.39594.

Higgins, C.G. 1990. Gully development. In: C.G. Higgins, D.R. Coates, (Eds.), Groundwater geomorphology: the role of subsurface water in earth-surface processes and landforms, Geological Society of America Special Paper 252, 139-156.

Jones, J.A.A. 2004. Soil piping and its hydrogeomorphic function. Cuaternario y Gemorfología 8 (3-4), 77-102.

Kaiser, A., Neugirg, F., Rock, G., Müller, C., Haas, F., Ries, J., Schmidt, J. 2014. Small-scale surface reconstruction and volume calculation of soil erosion in complex Moroccan Gully morphology using Structure from Motion. Remote Sensing 6, 7050-7080. DOI: http://doi.org/10.3390/rs6087050.

Martínez-Casasnovas, J.A. 2003. A spatial information technology approach for the mapping and quantification of gully erosion. Catena 50 (2), 293-308. DOI: http://doi.org/10.1016/S0341-8162(02)00134-0.

Martínez-Murillo, J.F., Nadal-Romero, E., Regüés, D., Cerdà, A., Poesen, J. 2013. Soil erosion and hydrology of the western Mediterranean badlands throughout rainfall simulation experiments: A review. Catena 106, 101-112. DOI: http://doi.org/10.1016/j.catena.2012.06.001.

Marzolff, I., Ries, J.B. 2011. Piping as a process of gully erosion in small format aerial photography. A short note. Cuadernos de Investigación Geográfica 37 (1), 115-120.

Mathys, N., Klotz, S., Esteves, M., Descroix, L., Lapetite, J.M. 2005. Runoff and erosion in the Black Marls of the French Alps: observations and measurements at the plot scale. Catena 63, 261-281. DOI: 10.1016/j.catena.2005.06.010.

Nadal-Romero, E., Latron, J., Martí-Bono, C., Regüés, D. 2008. Temporal distribution of suspended sediment transport in a humid Mediterranean badland area: The Araguás catchment, Central Pyrenees. Geomorphology 97, 601-6116. DOI: http://doi.org/10.1016/j.geomorph.2007.09.009.

Nadal-Romero, E., Revuelto, J., Errea, P., López-Moreno, J.I. 2015. The application of terrestrial laser scanner and SfM photogrammetry in measuring erosion and deposition processes in two opposite slopes in a humid badlands area (Central Spanish Pyrenees). SOIL 1, 561.573. DOI: http://doi.org/10.5194/soil-1-561-2015.

Neugirg, F., Kaiser, A., Huber, A., Heckmann, T., Schindewolf, M., Schmidt, J., Becht, M., Haas, F. 2016a. Using terrestrial LiDAR data to analyse morphodynamics on steep unvegetated slopes driven by different geomorphic processes. Catena 142, 269-280. DOI: http://doi.org/10.1016/j.catena.2016.03. 021.

Neugirg, F., Stark, M., Kaiser, A., Vlacilova, M., Della Seta, M., Vergari, F., Schmidt, J., Becht, M., Haas, F. 2016b. Erosion processes in calanchi in the Upper Orcia Valley, Southern Tuscany, Italy based on multitemporal high-resolution terrestrial LiDAR and UAV surveys. Geomorphology 269, 8-22. DOI: http://doi.org/10.1016/j.geomorph.2016.06.027.

Nichols, M.H., Nearing, M., Hernandez, M., Polyajov, V.O. 2016. Monitoring channel head erosion processes in response to an artificially induced abrupt base level change using time-lapse photography. Geomorphology 265, 107-116. DOI: http://doi.org/10.1016/j.geomorph.2016.05.001.

Passalacqua, P., Belmont, P., Staley, S.M., Simley, J.D., Arrowsmith, J.R., Bode, C.A., Crosby, C., Delong, S.B., Glenn, N., Kelly, S.A., Lague, D., Sangireddy, H., Schaffrath, K., Tarboton, D.G., Wasklewicz, T., Weathon, J.M. 2015. Analysing high resolution topography for advancing the understanding of mass and energy transfer through landscapes: A review. Earth-Science Reviews 148, 174-193. DOI: http://doi.org/10.1016/j.earscirev.2015.05.012.

Picard, G., Arnaud, L., Panel, J.M., Morin, S. 2016. Design of a scanning laser meter for monitoring the spatio-temporal evolution of snow depth and its application in the Alps and in Antarctica. The Cryosphere 10, 1495-1511. DOI: http://doi.org/10.5194/tc-10-1495-2016.

Piégay, H., Kondolf, G.M., Minear, J.T., Vaudor, L. 2015. Trends in publications in fluvial geomorphology over two decades: a truly new era in the discipline owing to recent technological revolution? Geomorphology 248, 489-500. DOI: http://doi.org/10.1016/j.geomorph.2015.07.039.

Revuelto, J., López-Moreno, J. I., Azorín-Molina, C., Zabalza, J., Arguedas, G., Vicente-Serrano, S.M. 2014. Mapping the annual evolution of snow depth in a small catchment in the Pyrenees using the long-range terrestrial laser scanning. Journal of Maps 10 (3), 1-15. DOI: http://doi.org/10.1080/17445647.2013. 869268.

Ries, J., Marzolff, I. 2003. Monitoring of gully erosion in the Central Ebro Basin by large-scale aerial photography taken from a remotely controlled blimp. Catena 50 (2-4), 309-328. DOI: http://doi.org/10.1016/S0341-8162(02)00133-9.

Romero-Díaz, A., Marín Sanleandro, P., Sánchez Soriano, A., Belmonte Serrato, F., Faulkner, H. 2007. The causes of piping in a set of abandoned agricultural terraces in southeast Spain. Catena 69 (3), 282-293. DOI: http://doi.org/10.1016/j.catena.2006.07.008.

Smith, M.W., Vericat, D. 2015. From experimental plots to experimental landscapes: topography, erosion and deposition in subhumid badlands from Structure-from-Motion photogrammetry. Earth Surface Processes and Landforms 40 (12), 1656-1671. DOI: http://doi.org/10.1002/esp.3747,2015.

Valentin, C., Poesen, J., Li, Y. 2005. Gully erosion: Impacts, factors and control. Catena 63 (2-3), 132-153. DOI: http://doi.org/10.1016/j.catena.2005.06.001

Verachtert, E., Van Den Eeckhaut, M., Martínez-Murillo, J.F., Nadal-Romero, E., Poesen, J., Devoldere, S., Wijnants, N., Deckers, J. 2013. Impact of soil characteristics and land use on pipe erosion in a temperate humid climate: Field studies in Belgium. Geomorphology 192, 1-14. DOI: http://doi.org/10.1016/j.geomorph.2013.02.019.

Vergari, F., Della Seta, M., Del Monte, M., Fredi, P., Lupia Palmieri, E. 2013. Long- and short-term evolution of several Mediterranean denudation hot spots: The role of rainfall variations and human impact. Geomorphology 183, 14-27. DOI: http://doi.org/10.1016/j.geomorph.2012.08.002.

Vericat, D., Smith, M.W., Brasington, J. 2014. Patterns of topographic change in sub-humid badlands determined by high resolution multi-temporal topographic surveys. Catena 120, 164-176. DOI: http://doi.org/10.1016/j.catena.2014.04.012.

Viles, H. 2016. Technology and geomorphology: Are improvements in data collection techniques transforming geomorphic science? Geomorphology 270, 121-133. DOI: http://doi.org/10.1016/j.geomorph.2016.07. 011.

Wohl, E., Bierman, P.R., Montgomery, D.R. 2016. Earth's dynamic surface: a perspective on the past 50 years in geomorphology. Geological Society of America Special Papers 523, SPE523-01. DOI: http://doi.org/ 10.1130/2016.2523(01).

Zgłobicki, W., Poesen, J., Cohen, M., Del Monte, M., García-Ruiz, J.M., Ionita, I., Niacsu, L., Machová, Z., Martín-Duque, J.F., Nadal-Romero, E., Pica, A., Rey, F., Solé-Benet, A., Stankoviansky, M., Stolz, C., Torri, D., Soms, J., Vergari, F. (submitted). The potential of permanent gullies in Europe as geomorphosites. Geoheritage.

Descargas

Publicado

2017-06-30

Cómo citar

1.
Ferrer V, Errea P, Alonso E, Nadal-Romero E, Gómez-Gutiérrez A. Análisis multiescala para estudiar procesos geomorfológicos en un área acarcavada de ambientes semiáridos (Depresión del Ebro, España). CIG [Internet]. 30 de junio de 2017 [citado 29 de marzo de 2025];43(1):41-62. Disponible en: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/3139

Número

Sección

Artículos

Artículos más leídos del mismo autor/a

1 2 > >>