Procesos de erosión en diferentes unidades del relieve: relaciones entre forma y proceso

Autores/as

  • T. Iserloh Physical Geography, Trier University, Trier
  • S. Wirtz Physical Geography, Trier University, Trier
  • M. Seeger Physical Geography, Trier University, Trier
  • I. Marzolff Physical Geography, Goethe University, Frankfurt am Main
  • J.B. Ries Physical Geography, Trier University, Trier

DOI:

https://doi.org/10.18172/cig.3206

Palabras clave:

unidades de relieve, procesos erosivos, simulación de lluvia, experimentos sobre cárcavas, monitoreo de cárcavas

Resumen

Las unidades geomorfológicas están relacionadas con ciertos procesos y con la historia de su formación. Además, se definen por sus formas y materiales. En este estudio se investigan los procesos de erosión en diferentes unidades de relieve. Simulaciones de lluvia, experimentos en rigolas y seguimientos a través de fotografía aérea se llevaron a cabo en dunas, glacis, rellenos holocenos, taludes y terrazas franco-arcillosos de origen cuaternario, con el objeto de conocer la variación en la intensidad de los procesos. Para ello, se evaluaron el impacto de las gotas de lluvia, la generación de escorrentía, la erosión en inter-rigolas y rigolas durante varios años. Las áreas de estudio se situaron en el NE y SE de España, sur de Marruecos y norte de Burkina Faso. Los resultados muestras claramente que los procesos medidos son muy diferentes entre sí según la formación de las propias unidades de relieve. Las dunas y los rellenos holocenos en los valles son altamente susceptibles a la erosión por el impacto de las gotas de lluvia y la formación de regueros. Por el contrario, las terrazas sobre materiales franco-arcillosos muestran baja susceptibilidad a los procesos de erosión. Por lo tanto, se puede concluir que las distintas unidades de relieve muestran diferentes dominancia e intensidad de procesos. Las diferencias son más significativas con el incremento de la escala y la complejidad del proceso erosivo: el crecimiento de las cárcavas varía mucho más entre diferentes unidades que los efectos del impacto de la gota de lluvia y la formación de rigolas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Anders, N.S., Seijmonsbergen, A.C., Bouten, W. 2011. Segmentation optimization and stratified object-based analysis for semi-automated geomorphological mapping. Remote Sensing of Environment 115, 2976-2985. DOI: http://doi.org/10.1016/j.rse.2011.05.007.

Anders, N.S., Seijmonsbergen, A.C., Bouten, W. 2009. Modelling channel incision and alpine hillslope development using laser altimetry data. Geomorphology 113, 35-46. DOI: http://doi.org/10.1016/j.geomorph.2009.03.022.

Andres, W., Ries, J., Seeger, M. 2002. Pre-Holocene sediments in the Barranco de las Lenas, Central Ebro Basin, Spain, as indicators for climate-induced fluvial activities. Quaternary International 93-94, 65-72. DOI: http://doi.org/10.1016/S1040-6182(02)00042-3.

Arnáez, J., Lasanta, T., Ruiz-Flaño, P., Ortigosa, L. 2007. Factors affecting runoff and erosion under simulated rainfall in Mediterranean vineyards. Soil & Tillage Research 93, 324-334. DOI: http://doi.org/10.1016/j.still.2006.05.013.

Auzet, A.-V., Poesen, J., Valentin, C. 2004. Editorial: soil surface characteristics: dynamics and impacts on soil erosion. Earth Surface Processes and Landforms 29, 1063-1064. DOI: http://doi.org/10.1002/esp.1101.

Auzet, A.V., Boiffin, J., Papy, F., Ludwig, B., Maucorps, J. 1993. Rill erosion as a function of the characteristics of cultivated catchments in the north of France. Catena 20, 41-62. DOI: http://doi.org/10.1016/0341-8162(93)90028-N.

Carr, M., Watkinson, D.A., Svendsen, J.C., Enders, E.C., Long, J.M., Lindenschmidt, K.-E. 2015. Geospatial modeling of the Birch River: Distribution of Carmine Shiner (Notropis percobromus) in Geomorphic Response Units (GRU). International Review of Hydrobiology 100, 129-140. DOI: http://doi.org/10.1002/iroh.201501789.

Casalí, J., Loizu, J., Campo, M.A., De Santisteban, L.M., Álvarez-Mozos, J. 2006. Accuracy of methods for field assessment of rill and ephemeral gully erosion. Catena 67, 128-138. DOI: http://doi.org/10.1016/j.catena.2006.03.005.

Castillo, C., Pérez, R., James, M.R., Quinton, J.N., Taguas, E.V., Gómez, J.A. 2012. Comparing the accuracy of several field methods for measuring gully erosion. Soil Science Society of America Journal 76, 1319-1332. DOI: http://doi.org/10.2136/sssaj2011.0390.

Cerdà, A., González-Pelayo, Ó., Giménez-Morera, A., Jordán, A., Pereira, P., Novara, A., Brevik, E.C., Prosdocimi, M., Mahmoodabadi, M., Keesstra, S., García Orenes, F., Ritsema, C.J. 2016. Use of barley straw residues to avoid high erosion and runoff rates on persimmon plantations in Eastern Spain under low frequency–high magnitude simulated rainfall events. Soil Research 54 (2), 154-165. DOI: http://doi.org/10.1071/SR15092.

Cerdà, A., Schnabel, S., Ceballos, A., Gomez-Amelia, D. 1998. Soil hydrological response under simulated rainfall in the Dehesa land system (Extremadura, SW Spain) under drought conditions. Earth Surface Processes and Landforms 23, 195-209. DOI: http://doi.org/10.1002/(SICI)1096-9837(199803)23:3<195::AID-ESP830>3.0.CO;2-I.

Cerdan, O., Le Bissonnais, Y., Couturier, A., Bourennane, H., Souchère, V. 2002. Rill erosion on cultivated hillslopes during two extreme rainfall events in Normandy, France. Soil & Tillage Research. 67, 99-108. DOI: http://doi.org/10.1016/S0167-1987(02)00045-4.

D’Oleire-Oltmanns, S., Marzolff, I., Peter, K., Ries, J. 2012. Unmanned Aerial Vehicle (UAV) for Monitoring Soil Erosion in Morocco. Remote Sensing 4, 3390-3416. DOI: http://doi.org/10.3390/rs4113390.

Drăguţ, L., Schauppenlehner, T., Muhar, A., Strobl, J., Blaschke, T. 2009. Optimization of scale and parametrization for terrain segmentation: An application to soil-landscape modeling. Computers and Geosciences 35, 1875-1883. DOI: http://doi.org/10.1016/j.cageo.2008.10.008.

Eltner, A., Kaiser, A., Castillo, C., Rock, G., Neugirg, F., Abellán, A. 2016. Image-based surface reconstruction in geomorphometry – merits, limits and developments. Earth Surface Dynamics 4 (2), 359-389. DOI: http://doi.org/10.5194/esurf-4-359-2016.

Flügel, W.-A. 1995. Delineating hydrological response units by geographical information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the River Bröl, Germany. Hydrological Processes 9, 423-436. DOI: http://doi.org/10.1002/hyp.3360090313.

Govers, G., Giménez, R., Van Oost, K. 2007. Rill erosion: Exploring the relationship between experiments, modelling and field observations. Earth-Science Reviews 84, 87-102. DOI: http://doi.org/10.1016/j.earscirev.2007.06.001.

Hellebrand, H., van den Bos, R. 2008. Investigating the use of spatial discretization of hydrological processes in conceptual rainfall runoff modelling: a case study for the meso-scale. Hydrological Processes 22, 2943-2952. DOI: http://doi.org/10.1002/hyp.6909.

Iserloh, T., Ries, J.B., Arnáez, J., Boix-Fayos, C., Butzen, V., Cerdà, A., Echeverría, M.T., Fernández-Gálvez, J., Fister, W., Geißler, C., Gómez, J.A., Gómez-Macpherson, H., Kuhn, N.J., Lázaro, R., León, F.J., Martínez-Mena, M., Martínez-Murillo, J.F., Marzen, M., Mingorance, M.D., Ortigosa, L., Peters, P., Regüés, D., Ruiz-Sinoga, J.D., Scholten, T., Seeger, M., Solé-Benet, A., Wengel, R., Wirtz, S. 2013a. European small portable rainfall simulators: A comparison of rainfall characteristics. Catena 110, 100-112. DOI: http://doi.org/10.1016/j.catena.2013.05.013.

Iserloh, T., Ries, J.B., Cerdà, A., Echeverría, M.T., Fister, W., Geißler, C., Kuhn, N.J., León, F.J., Peters, P., Schindewolf, M., Schmidt, J., Scholten, T., Seeger, M. 2013b. Comparative measurements with seven rainfall simulators on uniform bare fallow land. Zeitschrift für Geomorphologie Suppl. Issues 57, 11-26. DOI: http://doi.org/10.1127/0372-8854/2012/S-00085.

Iserloh, T., Fister, W., Seeger, M., Willger, H., Ries, J.B. 2012. A small portable rainfall simulator for reproducible experiments on soil erosion. Soil & Tillage Research 124, 131-137. DOI: http://doi.org/10.1016/j.still.2012.05.016.

Kawabata, D., Bandibas, J. 2009. Landslide susceptibility mapping using geological data, a DEM from ASTER images and an Artificial Neural Network (ANN). Geomorphology 113, 97-109. Doi : 10.1016/j.geomorph.2009.06.006.

Le Bissonnais, Y., Cerdan, O., Lecomte, V., Benkhadra, H., Souchère, V., Martin, P. 2005. Variability of soil surface characteristics influencing runoff and interrill erosion. Catena, 62, 111-124. DOI: http://doi.org/10.1016/j.catena.2005.05.001.

Märker, M. 2002. Regionale Erosionsmodellierung unter Verwendung des Konzepts der Erosion Response Units (ERU) am Beispiel zweier Flusseinzugsgebiete im südlichen Afrika. PhD-Thesis, Friedrich-Schiller-University of Jena, Chemistry and Geoscience Faculty.

Martínez-Murillo, J.F., Nadal-Romero, E., Regüés, D., Cerdà, A., Poesen, J. 2013. Soil erosion and hydrology of the western Mediterranean badlands throughout rainfall simulation experiments: A review. Catena 106, 101-112. DOI: http://doi.org/10.1016/j.catena.2012.06.001.

Martins, F.M.G., Fernandez, H.M., Isidoro, J.M.G.P., Jordán, A., Zavala, L. 2016. Classification of landforms in Southern Portugal (Ria Formosa Basin). Journal of Maps 12, 422-430. DOI: http://doi.org/ 10.1080/17445647.2015.1035346.

Marzolff, I., Ries, J.B., Poesen, J. 2011. Short-term versus medium-term monitoring for detecting gully-erosion variability in a Mediterranean environment. Earth Surface Processes and Landforms 36, 1604-1623. DOI: http://doi.org/10.1002/esp.2172.

Marzolff, I., Poesen, J. 2009. The potential of 3D gully monitoring with GIS using high-resolution aerial photography and a digital photogrammetry system. Geomorphology 111, 48-60. DOI: http://doi.org/10.1016/j.geomorph.2008.05.047.

Marzolff, I., Ries, J.B. 2007. Gully erosion monitoring in semi-arid landscapes. Zeitschrift für Geomorphologie NF 51, 405-425. DOI: http://doi.org/10.1127/0372-8854/2007/0051-0405.

Meissner, A.G.N., Carr, M.K., Phillips, I.D., Lindenschmidt, K.-E. 2016. Using a Geospatial Model to Relate Fluvial Geomorphology to Macroinvertebrate Habitat in a Prairie River- Part 2: Matching Family-Level Indices to Geomorphological Response Units (GRUs). Water 8, 42. DOI: http://doi.org/10.3390/w803107.

Merz, W., Bryan, R.B. 1993. Critical conditions for rill initiation on sandy loam Brunisols: laboratory and field experiments in southern Ontario, Canada. Geoderma 57, 357-385. DOI: http://doi.org/10.1016/0016-7061(93)90050-U.

Minár, J., Evans, I.S. 2008. Elementary forms for land surface segmentation: The theoretical basis of terrain analysis and geomorphological mapping. Geomorphology 95, 236-259. DOI: http://doi.org/10.1016/j.geomorph.2007.06.003.

Müller, C., Hellebrand, H., Seeger, M., Schobel, S. 2009. Identification and regionalization of dominant runoff processes – a GIS-based and a statistical approach. Hydrology and Earth System Sciencies 13, 779-792. DOI: http://doi.org/10.5194/hess-13-779-2009.

Nouwakpo, S.K., Weltz, M.A., McGwire, K. 2016a. Assessing the performance of structure-from-motion photogrammetry and terrestrial LiDAR for reconstructing soil surface microtopography of naturally vegetated plots. Earth Surface Processes and Landforms 41, 308-322. DOI: http://doi.org/10.1002/esp.3787.

Nouwakpo, S.K., Williams, C.J., Al-Hamdan, O.Z., Weltz, M.A., Pierson, F., Nearing, M. 2016b. A review of concentrated flow erosion processes on rangelands: Fundamental understanding and knowledge gaps. International Soil and Water Conservation Research 4, 75-86. Doi : 10.1016/j.iswcr.2016.05.003.

Peña Monné, J.L., Echeverría Arnedo, M.T., Petit-Maire, N., Lafont, R. 1993. Cronología e interpretación de las acumulaciones holocenas de la val de las Lenas (Depresión del Ebro, Zaragoza). Geographicalia 321-332.

Pirotti, F. 2013. State of the Art of Ground and Aerial Laser Scanning Technologies for High-Resolution Topography of the Earth Surface. European Journal of Remote Sensing 46, 66-78. DOI: http://doi.org/10.5721/EuJRS20134605.

Poesen, J. 1987. Transport of rock fragments by rill flow – a field study. Catena Suppl. 8, 35-54.

Prosdocimi, M., Burguet, M., Di Prima, S., Sofia, G., Terol, E., Rodrigo Comino, J. Cerdà, A., Tarolli, P., 2017. Rainfall simulation and Structure-from-Motion photogrammetry for the analysis of soil water erosion in Mediterranean vineyards. Science of the Total Environment 574, 204-215. Doi : 10.1016/j.scitotenv.2016.09.036.

Ries, J.B., Marzen, M., Iserloh, T., Fister, W. 2014. Soil erosion in Mediterranean landscapes - Experimental investigation on crusted surfaces by means of the Portable Wind and Rainfall Simulator. Journal of Arid Environments 100-101, 42-51. DOI: http://doi.org/10.1016/j.jaridenv.2013.10.006.

Ries, J.B., Marzolff, I. 2003. Monitoring of gully erosion in the Central Ebro Basin by large-scale aerial photography taken from a remotely controlled blimp. Catena 50, 309-328. DOI: http://doi.org/10.1016/S0341-8162(02)00133-9.

Rodrigo Comino, J., Iserloh, T., Lassu, T., Cerdà, A., Keestra, S.D., Prosdocimi, M., Brings, C., Marzen, M., Ramos, M.C., Senciales, J.M., Ruiz Sinoga, J.D., Seeger, M., Ries, J.B. 2016. Quantitative comparison of initial soil erosion processes and runoff generation in Spanish and German vineyards. Science of the Total Environment 565, 1165-1174. DOI: http://doi.org/10.1016/j.scitotenv.2016.05.163.

Scherrer, S., Naef, F., Faeh, A.O., Cordery, I. 2007. Formation of runoff at the hillslope scale during intense precipitation. Hydrology and Earth System Sciences 11, 907-922. DOI: http://doi.org/5194/hess-11-907-2007.

Schwanghart, W., Scherler, D. 2014. Short Communication: TopoToolbox 2 - MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surface Dynamics 2, 1-7. DOI: http://doi.org/10.5194/esurf-2-1-2014.

Seeger, M., Marzolff, I., Ries, J.B. 2009. Identification of gully-development processes in semi-arid NE-Spain. Zeitschrift für Geomorphologie 53, 417-431. DOI: http://doi.org/10.1127/0372-8854/2009/0053-0417.

Seeger, M. 2007. Uncertainty of factors determining runoff and erosion processes as quantified by rainfall simulations. Catena 71, 56-67. DOI: http://doi.org/10.1016/j.catena.2006.10.005.

Sidorchuk, A., Märker, M., Moretti, S., Rodolfi, G. 2003. Gully erosion modelling and landscape response in the Mbuluzi River catchment of Swaziland. Catena 50, 507-525. DOI: http://doi.org/10.1016/S0341-8162(02)00123-6.

Smith, M.J., Paron, P., Griffiths, J.S. 2011. Geomorphological Mapping: Methods and Applications. Elsevier Science.

Stöcker, C., Eltner, A., Karrasch, P. 2015. Measuring gullies by synergetic application of UAV and close range photogrammetry – A case study from Andalusia, Spain. Catena 132, 1-11. DOI: http://doi.org/10.1016/j.catena.2015.04.004.

Tarolli, P. 2014. High-resolution topography for understanding Earth surface processes: Opportunities and challenges. Geomorphology 216, 295-312. DOI: http://doi.org/10.1016/j.geomorph.2014.03.008.

Tarolli, P., Sofia, G., Calligaro, S., Prosdocimi, M., Preti, F., Dalla Fontana, G. 2015. Vineyards in Terraced Landscapes: New Opportunities from Lidar Data. Land Degradation & Development 26, 92-102. DOI: http://doi.org/10.1002/ldr.2311.

Tarolli, P., Dalla Fontana, G. 2009. Hillslope-to-valley transition morphology: New opportunities from high resolution DTMs. Geomorphology 113, 47-56. DOI: http://doi.org/10.1016/j.geomorph.2009.02.006.

Torri, D., Poesen, J. 2014. A review of topographic threshold conditions for gully head development in different environments. Earth-Science Reviews 130, 73-85. DOI: http://doi.org/10.1016/j.earscirev.2013.12.006.

Wang, R., Zhang, S., Pu, L., Yang, J., Yang, C., Chen, J., Guan, C., Wang, Q., Chen, D., Fu, B., Sang, X. 2016. Gully Erosion Mapping and Monitoring at Multiple Scales based on Multi-Source Remote Sensing Data of the Sancha River Catchment, Northeast China. International Journal of Geo-Information 5 (11), 200. DOI: http://doi.org/10.3390/ijgi5110200.

Wells, R.R., Momm, H.G., Bennett, S.J., Gesch, K.R., Dabney, S.M., Cruse, R., Wilson, G.V. 2016. A Measurement Method for Rill and Ephemeral Gully Erosion Assessments. Soil Science Society of America Journal 80, 203-214. DOI: http://doi.org/10.2136/sssaj2015.09.0320.

Wirtz, S., Seeger, M., Remke, A., Wengel, R., Wagner, J.-F., Ries, J.B. 2013a. Do deterministic sediment detachment and transport equations adequately represent the process-interactions in eroding rills? An experimental field study. Catena 101, 61-78. DOI: http://doi.org/10.1016/j.catena.2012.10.003.

Wirtz, S., Seeger, M., Zell, A., Wagner, C., Wagner, J.-F., Ries, J.B. 2013b. Applicability of Different Hydraulic Parameters to Describe Soil Detachment in Eroding Rills. PLoS ONE 8 (5), e64861. DOI: http://doi.org/10.1371/journal.pone.0064861.

Wirtz, S., Iserloh, T., Rock, G., Hansen, R., Marzen, M., Seeger, M., Betz, S., Remke, A., Wengel, R., Butzen, V., Ries, J.B. 2012a. Soil Erosion on Abandoned Land in Andalusia: A Comparison of Interrill- and Rill Erosion Rates. International Scholarly Research Notices Soil Science 2012, 1-16. DOI: http://doi.org/10.5402/2012/730870.

Wirtz, S., Seeger, M., Ries, J.B. 2012b. Field experiments for understanding and quantification of rill erosion processes. Catena 91, 21-34. DOI: http://doi.org/10.1016/j.catena.2010.12.002.

Wirtz, S., Seeger, M., Ries, J.B. 2010. The rill experiment as a method to approach a quantification of rill erosion process activity. Zeitschrift für Geomorphologie 54, 47-64. DOI: http://doi.org/0.1127/0372-8854/2010/0054-0004.

Descargas

Publicado

2017-06-30

Cómo citar

1.
Iserloh T, Wirtz S, Seeger M, Marzolff I, Ries J. Procesos de erosión en diferentes unidades del relieve: relaciones entre forma y proceso. CIG [Internet]. 30 de junio de 2017 [citado 19 de mayo de 2024];43(1):171-87. Disponible en: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/3206

Número

Sección

Artículos