Variación espacio-temporal de los procesos hidrológicos del suelo en viñedos con elevadas pendientes (Valle del Ruwer-Mosela, Alemania)
DOI:
https://doi.org/10.18172/cig.2934Palabras clave:
viñedos, permeámetro de Guelph, infiltración, procesos hidrológicos, Valle del Ruwer-MoselaResumen
Los suelos de los viñedos del valle del Ruwer-Mosela (Alemania) cultivados en elevadas pendientes muestran una alta variabilidad espacio-temporal en su dinámica hidrológica. A través del uso del permeámetro de Guelph se realizaron un total de cuarenta y dos experimentos en viñedos jóvenes y viejos para medir las tasas de infiltración, la conductividad hidráulica y el potencial del flujo matricial. Los ensayos fueron realizados antes de la vendimia coincidiendo con la primavera y el verano (con el suelo relativamente seco y sin actividad reciente de pisadas y maquinaria), y tras la cosecha en otoño (con un manto edáfico húmedo, con señales de compactación y un menor contenido de materia orgánica).
En general, todos los parámetros analizados fueron mucho más elevados en los viñedos jóvenes que en los viejos y aumentaron tras la vendimia. En las viñas jóvenes los tres parámetros analizados mostraron sus mayores valores en la parte media (398,5 mm h-1 de tasa de infiltración, 89,2 mm h-1 de conductividad hidráulica y 62,8 mm2 h-1 de potencial del flujo matricial). Por su parte, en las viñas viejas se observó un descenso de la infiltración desde la parte superior a la inferior de la parcela (desde 42,5 a 16,8 mm h-1). Los resultados de la conductividad hidráulica y el potencial del flujo matricial marcaron también una dinámica hidrológica parecida: descenso de los parámetros conforme se desciende en la parcela (13,2 a 5,4 mm h-1 y desde 5,5 a 2,5 mm2 h-1). Por ultimo, se observó cómo el factor que mayor coeficiente de determinación obtuvo con estas dinámicas hidrológicas fue la variación del contenido de agua en el suelo y las prácticas agrícolas.Descargas
Citas
Archer, N.A.L., Bonell, M., Coles, N., MacDonald, A.M., Auton, C.A., Stevenson, R. 2013. Soil characteristics and landcover relationships on soil hydraulic conductivity at a hillslope scale: A view towards local flood management. Journal of Hydrology 497, 208–222. Doi: 10.1016/j.jhydrol.2013.05.043
Arnáez, J., Lasanta, T., Ruiz-Flaño, P., Ortigosa, L. 2007. Factors affecting runoff and erosion under simulated rainfall in Mediterranean vineyards. Soil & Tillage Research 93, 324–334. Doi: 10.1016/j.still.2006.05.013
Bagarello, V., 1997. Influence of well preparation on field-saturated hydraulic conductivity measured with the Guelph Permeameter. Geoderma 80, 169–180. Doi: 10.1016/S0016-7061(97)00051-7
Bagarello, V., Castellini, M., Di Prima, S., Iovino, M. 2014. Soil hydraulic properties determined by infiltration experiments and different heights of water pouring. Geoderma 213, 492–501. Doi: 10.1016/j.geoderma.2013.08.032
Biddoccu, M., Ferraris, S., Cavallo, E., Opsi, F., Previati, M., Canone, D. 2013. Hillslope Vineyard Rainfall-Runoff Measurements in Relation to Soil Infiltration and Water Content. Procedia Environmental Sciences 19, 351–360. Doi: 10.1016/j.proenv.2013.06.040
Blavet, D., De Noni, G., Le Bissonnais, Y., Leonard, M., Maillo, L., Laurent, J.Y., Asseline, J., Leprun, J.C., Arshad, M.A., Roose, E. 2009. Effect of land use and management on the early stages of soil water erosion in French Mediterranean vineyards. Soil & Tillage Research 106, 124–136. Doi: 10.1016/j.still.2009.04.010
Bodner, G., Scholl, P., Loiskandl, W., Kaul, H.P. 2013. Environmental and management influences on temporal variability of near saturated soil hydraulic properties. Geoderma 204-205, 120–129. Doi: 10.1016/j.geoderma.2013.04.015
Bruggisser, O.T., Schmidt-Entling, M.H., Bacher, S. 2010. Effects of vineyard management on biodiversity at three trophic levels. Biological Conservation 143, 1521–1528. Doi: 10.1016/j.biocon.2010.03.034
Cadot, Y., Caillé, S., Thiollet-Scholtus, M., Samson, A., Barbeau, G., Cheynier, V. 2012. Characterisation of typicality for wines related to terroir by conceptual and by perceptual representations. An application to red wines from the Loire Valley. Food Quality and Preference 24, 48–58. Doi: 10.1016/j.foodqual.2011.08.012
Casalí, J., Giménez, R., De Santisteban, L., Álvarez-Mozos, J., Mena, J., Del Valle de Lersundi, J. 2009. Determination of long-term erosion rates in vineyards of Navarre (Spain) using botanical benchmarks. Catena 78, 12–19. Doi: 10.1016/j.catena.2009.02.015
Cerdà, A., 1997. Soil erosion after land abandonment in a semiarid environment of southeastern Spain. Arid Soil Research 11, 163–176. Doi: 10.1080/15324989709381469
Chevigny, E., Quiquerez, A., Petit, C., Curmi, P. 2014. Lithology, landscape structure and management practice changes: Key factors patterning vineyard soil erosion at metre-scale spatial resolution. Catena 121, 354–364. Doi: 10.1016/j.catena.2014.05.022
Corbane, C., Jacob, F., Raclot, D., Albergel, J., Andrieux, P. 2012. Multitemporal analysis of hydrological soil surface characteristics using aerial photos: A case study on a Mediterranean vineyard. Int. J. Appl. Earth Obs. Geoinformation 18, 356–367. Doi: 10.1016/j.jag.2012.03.009
Costantini, E.A.C., Agnelli, A.E., Fabiani, A., Gagnarli, E., Mocali, S., Priori, S., Simoni, S., Valboa, G. 2015. Short-term recovery of soil physical, chemical, micro- and mesobiological functions in a new vineyard under organic farming. SOIL 1, 443–457. Doi: 10.5194/soil-1-443-2015
Davies, B.E. 1974. Loss-on-Ignition as an Estimate of Soil Organic Matter. Soil Science Society of America Journal 38. Doi: 10.2136/sssaj1974.03615995003800010046x
De Baets, S., Poesen, J., Meersmans, J., Serlet, L. 2011. Cover crops and their erosion-reducing effects during concentrated flow erosion. Catena 85, 237–244. Doi: 10.1016/j.catena.2011.01.009
Elrick, D.E., Reynolds, W.D. 1992. Methods for analyzing constant-head well Permeameter data. Soil Science Society of America Journal 56, 320–323. Doi: 10.2136/sssaj1992.03615995005600010052x
Fischer, U., Roth, D., Christmann, M. 1999. The impact of geographic origin, vintage and wine estate on sensory properties of Vitis vinifera cv. Riesling wines. Food Quality and Preference 10, 281–288. Doi: 10.1016/S0950-3293(99)00008-7
Follain, S., Ciampalini, R., Crabit, A., Coulouma, G., Garnier, F. 2012. Effects of redistribution processes on rock fragment variability within a vineyard topsoil in Mediterranean France. Geomorphology 175–176, 45–53. Doi: 10.1016/j.geomorph.2012.06.017
Galati, A., Gristina, L., Crescimanno, M., Barone, E., Novara, A. 2015. Towards More Efficient Incentives for Agri-environment Measures in Degraded and Eroded Vineyards. Land Degradation & Development 26, 557–564. Doi: 10.1002/ldr.2389
Gruber, B., Kosegarten, H., 2002. Depressed growth of non-chlorotic vine grown in calcareous soil is an iron deficiency symptom prior to leaf chlorosis. Journal of Plant Nutrition and Soil Science 165, 111–117. Doi: 10.1002/1522-2624(200202)165:1<111::AID-JPLN111>3.0.CO;2-B
Gupta, R.K., Rudra, R.P., Dickinson, W.T., Patni, N.K., Wall, G.J. 1993. Comparison of saturated hydraulic conductivity measured by various field methods. Transactions of the ASAE 36, 51–55. Doi: 10.13031/2013.28313
Gupta, R.K., Rudra, R.P., Parkin, G. 2006. Analysis of spatial variability of hydraulic conductivity at field scale. Canadian Biosystems Engineering 48, 1.55–1.62.
Gwenzi, W., Hinz, C., Holmes, K., Phillips, I.R., Mullins, I.J. 2011. Field-scale spatial variability of saturated hydraulic conductivity on a recently constructed artificial ecosystem. Geoderma 166, 43–56. Doi: 10.1016/j.geoderma.2011.06.010
Hewlett, J.D., Hibbert, A.R. 1967. Factors affecting the response of small watersheds to precipitation in humid areas. En: Sopper, W.E. y Lull, H.W., (eds.), Classics in physical geography revisited. New York, Pergamon Press For. Hydrol., pp. 275–290.
Huang, M., Rodger, H., Barbour, S.L. 2014. An evaluation of air permeability measurements to characterize the saturated hydraulic conductivity of soil reclamation covers. Canadian Journal of Soil Science 95, 15–26. Doi: 10.4141/cjss-2014-072
Huang, M., Zettl, J.D., Lee Barbour, S., Pratt, D. 2016. Characterizing the spatial variability of the hydraulic conductivity of reclamation soils using air permeability. Geoderma 262, 285–293. Doi: 10.1016/j.geoderma.2015.08.014
Imeson, A.C., Lavee, H., 1998. Soil erosion and climate change: the transect approach and the influence of scale. Geomorphology 23, 219–227. Doi: 10.1016/S0169-555X(98)00005-1
IUSS Working Group WRB 2014. World Reference Base for Soil Resources 2014. World Soil Resources Report. FAO, Roma.
IUSS Working Group WRB 2007. Land Evaluation. Towards a revised framework. 2nd ed., Land and Water discussion paper, FAO, Roma.
IUSS Working Group WRB 2006. Guidelines for constructing smallscale map legends using the WRB. 2nd ed., World Soil Resources. FAO, Roma.
Jačka, L., Pavlásek, J., Kuráž, V., Pech, P. 2014. A comparison of three measuring methods for estimating the saturated hydraulic conductivity in the shallow subsurface layer of mountain podzols. Geoderma 219–220, 82–88. Doi: 10.1016/j.geoderma.2013.12.027
Jackson, R.S., 2014. Wine science. Principles and Applications. Fourth Edition, Elsevier, London, 984 pp.
Jirků, V., Kodešová, R., Nikodem, A., Mühlhanselová, M., Žigová, A. 2013. Temporal variability of structure and hydraulic properties of topsoil of three soil types. Geoderma 204–205, 43–58. Doi: 10.1016/j.geoderma.2013.03.024
Kodešová, R., Šimůnek, J., Nikodem, A., Jirků, V. 2010. Estimation of the Dual-Permeability Model Parameters using Tension Disk Infiltrometer and Guelph Permeameter. Vadose Zone Journal 9. Doi: 10.2136/vzj2009.0069
Köpppen, W., Geiger, R. 1954. Klima der Erde. Justus Perthes Ed., Darmstadt.
Kosmas, C., Danalatos, N., Cammeraat, L.H., Chabart, M., Diamantopoulos, J., Farand, R., Gutierrez, L., Jacob, A., Marques, H., Martinez-Fernandez, J., Mizara, A., Moustakas, N., Nicolau, J.M., Oliveros, C., Pinna, G., Puddu, R., Puigdefabregas, J., Roxo, M., Simao, A., Stamou, G., Tomasi, N., Usai, D., Vacca, A. 1997. The effect of land use on runoff and soil erosion rates under Mediterranean conditions. Catena 29, 45–59. Doi: 10.1016/S0341-8162(96)00062-8
Kumar, S., Sekhar, M., Reddy, D.V., Mohan Kumar, M.S. 2010. Estimation of soil hydraulic properties and their uncertainty: comparison between laboratory and field experiment. Hydrological Processes 24, 3426–3435. Doi: 10.1002/hyp.7775
Leonard, J., Andrieux, P. 1998. Infiltration characteristics of soils in Mediterranean vineyards in Southern France. Catena 32, 209–223. Doi: 10.1016/S0341-8162(98)00049-6
Lesch, S.M., Corwin, D.L. 2003. Using the dual-pathway parallel conductance model to determine how different soil properties influence conductivity survey data. Agronomy Journal 95, 365–379. Doi: 10.2134/agronj2003.3650
Lieskovský, J., Kenderessy, P. 2014. Modelling the effect of vegetation cover and different tillage practices on soil erosion in vineyards: a case study in Vráble (Slovakia) using WATEM/SEDEM. Land Degradation & Development 25, 288–296. Doi: 10.1002/ldr.2162
Likar, M., Vogel-Mikuš, K., Potisek, M., Hančević, K., Radić, T., Nečemer, M., Regvar, M. 2015. Importance of soil and vineyard management in the determination of grapevine mineral composition. Science of the Total Environment 505, 724–731. Doi: 10.1016/j.scitotenv.2014.10.057
López-Piñeiro, A., Muñoz, A., Zamora, E., Ramírez, M. 2013. Influence of the management regime and phenological state of the vines on the physicochemical properties and the seasonal fluctuations of the microorganisms in a vineyard soil under semi-arid conditions. Soil & Tillage Research 126, 119–126. Doi: 10.1016/j.still.2012.09.007
MacDonald, A.M., Maurice, L., Dobbs, M.R., Reeves, H.J., Auton, C.A. 2012. Relating in situ hydraulic conductivity, particle size and relative density of superficial deposits in a heterogeneous catchment. Journal of Hydrology 434–435, 130–141. Doi: 10.1016/j.jhydrol.2012.01.018
Martínez-Casasnovas, J.A., Ramos, M.C., García-Hernández, D. 2009. Effects of land-use changes in vegetation cover and sidewall erosion in a gully head of the Penedès region (northeast Spain). Earth Surface Processes and Landforms 34, 1927–1937. Doi: 10.1002/esp.1870
Martínez-Murillo, J.F., Nadal-Romero, E., Regüés, D., Cerdà, A., Poesen, J. 2013. Soil erosion and hydrology of the western Mediterranean badlands throughout rainfall simulation experiments: A review. Catena 106, 101–112. Doi: 10.1016/j.catena.2012.06.001
Martínez-Murillo, J.F., Ruiz-Sinoga, J.D. 2003. Incidencia de algunas propiedades físicas de suelos en su respuesta hidrológica ante diferentes usos bajo condiciones mediterráneas (Montes de Málaga). Edafología 10, 57–62.
Morvan, X., Naisse, C., Malam Issa, O., Desprats, J.F., Combaud, A., Cerdan, O. 2014. Effect of ground-cover type on surface runoff and subsequent soil erosion in Champagne vineyards in France. Soil Use and Management 30, 372–381. Doi: 10.1111/sum.12129
Nasri, B., Fouché, O., Torri, D. 2015. Coupling published pedotransfer functions for the estimation of bulk density and saturated hydraulic conductivity in stony soils. Catena 131, 99–108. Doi: 10.1016/j.catena.2015.03.018
Novara, A., Gristina, L., Guaitoli, F., Santoro, A., Cerdà, A. 2013. Managing soil nitrate with cover crops and buffer strips in Sicilian vineyards. Solid Earth 4, 255–262. Doi: 10.5194/se-4-255-2013
Novara, A., Gristina, L., Saladino, S.S., Santoro, A., Cerdà, A. 2011. Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard. Soil & Tillage Research 117, 140–147. Doi: 10.1016/j.still.2011.09.007
Ortigosa Izquierdo, L.M., Lasanta Martínez, T. 1984. El papel de la escorrentía en la organización textural de suelos cultivados en pendiente: modelos en viñedos de La Rioja. Cuadernos de Investigación Geográfica 9, 99–111.
Paroissien, J.B., Lagacherie, P., Le Bissonnais, Y. 2010. A regional-scale study of multi-decennial erosion of vineyard fields using vine-stock unearthing–burying measurements. Catena 82, 159–168. Doi: 10.1016/j.catena.2010.06.002
Peter, K.D., Ries, J.B. 2013. Infiltration rates affected by land levelling measures in the Souss valley, South Morocco. Zeitschrift für Geomorphologie 57, 59–72.
Poesen, J., van Wesemael, B., Govers, G., Martínez-Fernandez, J., Desmet, P., Vandaele, K., Quine, T., Degraer, G. 1997. Patterns of rock fragment cover generated by tillage erosion. Geomorphology 18, 183–197.
Porta, J., López-Acevedo, M., Poch, R. 2014. Edafología: uso y protección de suelos. Tercera ed., Mundiprensa, Madrid.
Price, K., Jackson, C.R., Parker, A.J. 2010. Variation of surficial soil hydraulic properties across land uses in the southern Blue Ridge Mountains, North Carolina, USA. Journal of Hydrology 383, 256–268. Doi: 10.1016/j.jhydrol.2009.12.041
Prosdocimi, M., Cerdà, A., Tarolli, P. 2016a. Soil water erosion on Mediterranean vineyards: A review. Catena 141, 1–21. Doi: 10.1016/j.catena.2016.02.010
Prosdocimi, M., Jordán, A., Tarolli, P., Keesstra, S., Novara, A., Cerdà, A. 2016b. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Science of the Total Environment 547, 323–330. Doi: 10.1016/j.scitotenv.2015.12.076
Quiquerez, A., Chevigny, E., Allemand, P., Curmi, P., Petit, C., Grandjean, P. 2014. Assessing the impact of soil surface characteristics on vineyard erosion from very high spatial resolution aerial images (Côte de Beaune, Burgundy, France). Catena 116, 163–172. Doi: 10.1016/j.catena.2013.12.002
Ramos, M.C., Benito, C., Martínez-Casasnovas, J.A., 2015. Simulating soil conservation measures to control soil and nutrient losses in a small, vineyard dominated, basin. Agriculture, Ecosystems, Environment 213, 194 – 208. Doi :http://dx.doi.org/10.1016/j.agee.2015.08.004
Ramos, M.C., Martínez-Casasnovas, J.A. 2006. Impact of land levelling on soil moisture and runoff variability in vineyards under different rainfall distributions in a Mediterranean climate and its influence on crop productivity. Journal of Hydrology 321, 131–146. Doi: 10.1016/j.jhydrol.2005.07.055
Ramos, M.C., Nacci, S., Pla, I. 2000. Soil sealing and its influence on erosion rates for some soils in the Mediterranean area. Soil Science 165, 398–403.
Resolution OIV/VITI 333/2010, 2010. Definition of vitivinicultural“Terroir”. T. Asamblea General del OIV, Tbilisi, Georgia.
Reynolds, W.D. 1986. The Guelph Permeameter method for in situ measurement of field-saturated hydraulic conductivity and matric flux potential. Unpublished PhD, Guelph University, Guelph, Ontario, Canadá.
Reynolds, W.D., Elrick, D.E. 2002. Constant head well permeameter (vadose zone). In: J.H. Dane, G.C. Topp (Eds.), Methods of Soil Analysis, Physical Methods. Soil Science Society of America, Inc., Madison, WI (USA), pp. 844–858.
Reynolds, W.D., Lewis, J.K. 2012. A drive point application of the Guelph Permeameter method for coarse-textured soils. Geoderma 187–188, 59–66. Doi: 10.1016/j.geoderma.2012.04.004
Richter, G. 1980. On the Soil Erosion Problem in the Temperate Humid Area of Central Europe. GeoJournal 4, 279–287.
Richter, G. 1979. Bodenerosion in Rebanlagen des Moselgebietes. Ergebnisse quantitativer Untersuchungen 1974-1977. Universitat Trier, Ed. Forschungsstelle Bodenerosion d. Univ. Trier, Trier.
Richter, G. 1975. Der Aufbau der Forschungsstelle Bodenerosion und die ersten Messungen in Weinbergslagen. Forschungsstelle Bodenerosion der Universitat Trier, Trier.
Rienzner, M., Gandolfi, C. 2014. Investigation of spatial and temporal variability of saturated soil hydraulic conductivity at the field-scale. Soil & Tillage Research 135, 28 – 40. Doi: http://dx.doi.org/10.1016/j.still.2013.08.012
Rodrigo-Comino, J., Brings, C., Lassu, T., Iserloh, T., Senciales, J., Martínez-Murillo, J., Ruiz-Sinoga, J., Seeger, M., Ries, J., 2015a. Rainfall and human activity impacts on soil losses and rill erosion in vineyards (Ruwer Valley, Germany). Solid Earth 6, 823–837. Doi: 10.5194/se-6-823-2015
Rodrigo Comino, J., Lassu, T., González, J.M.S., Ruiz-Sinoga, J.D.R., Seeger, K.M., Ries, J.B. 2015b. Estudio de procesos geomorfodinámicos en campos cultivados de viñedos sobre laderas en pendientes en el valle del Ruwer (Alemania). Cuadernos Geográficos 54, 6–26.
Rodrigo-Comino, J., Iserloh, T., Morvan, X., Malam Issa, O., Naisse, C., Keesstra, S.D., Cerdà, A., Prosdocimi, M., Arnáez, J., Lasanta, T., Ramos, M.C., Marqués, M.J., Ruiz Colmenero, M., Bienes, R., Ruiz-Sinoga, J.D., Seeger, M., Ries, J.B., 2016. Soil Erosion Processes in European Vineyards: A Qualitative Comparison of Rainfall Simulation Measurements in Germany, Spain and France. Hydrology 3, 1-19. doi:10.3390/hydrology3010006
Rodrigo Comino, J., Senciales González, J.M., 2015. Ratio LE para el ajuste de perfiles longitudinales en cursos fluviales de montaña. Aplicación a la cuenca del río Almáchar (Málaga, España). Cuaternario y Geomorfología 29, 31–56.
Ronayne, M.J., Houghton, T.B., Stednick, J.D. 2012. Field characterization of hydraulic conductivity in a heterogeneous alpine glacial till. Journal of Hydrology 458–459, 103–109. Doi: 10.1016/j.jhydrol.2012.06.036
Rosell, R.A., Gasparoni, J.C., Galantini, J.A. 2001. Soil organic matter evaluation. In: R. Lal, J. Kimble, R. Follet, B. Stewart (Eds.), Assessment Methods for Soil Carbon. Lewis Publishers, USA, pp. 311–322.
Ruiz-Sinoga, J.D., Martinez-Murillo, J.F. 2009. Effects of soil surface components on soil hydrological behaviour in a dry Mediterranean environment (Southern Spain). Geomorphology 108, 234–245. Doi: 10.1016/j.geomorph.2009.01.012
Salome, C., Coll, P., Lardo, E., Villenave, C., Blanchart, E., Hinsinger, P., Marsden, C., Le Cadre, E. 2014. Relevance of use-invariant soil properties to assess soil quality of vulnerable ecosystems: The case of Mediterranean vineyards. Ecological Indicators 43, 83–93. Doi: 10.1016/j.ecolind.2014.02.016
Soil moisture Equipment Corp. 2008. Model 2800K1 Guelph Permeameter Operating Instructions, Soil moisture Equipment Corp. ed. Santa Barbara, CA.
Taylor, J.A., Coulouma, G., Lagacherie, P., Tisseyre, B. 2009. Mapping soil units within a vineyard using statistics associated with high-resolution apparent soil electrical conductivity data and factorial discriminant analysis. Geoderma 153, 278–284. Doi: 10.1016/j.geoderma.2009.08.014
van Leeuwen, C., Bois, B., De Resseguier, L., Roby, J.P. 2010. New methods and technologies to describe the environment in terroir studies. In: VIII International Terroir Congress, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per la Viticoltura, Soave, Italia, pp. 2-13.
Wu, L., Swan, J.B., Paulson, W.H., Randall, G.W. 1992. Tillage effects on measured soil hydraulic properties. Soil & Tillage Research 25, 17–33. Doi: 10.1016/0167-1987(92)90059-K
Xiang, J. 1994. Improvements in evaluating constant-head permeameter test data. Journal of Hydrology 162, 77–97. Doi: 10.1016/0022-1694(94)90005-1
Zhang, Z.F., Groenevelt, P.H., Parkin, G.W. 1998. The well-shape factor for the measurement of soil hydraulic properties using the Guelph Permeameter. Soil & Tillage Research 49, 219–221. Doi: 10.1016/S0167-1987(98)00174-3
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
El autor o autora conserva todos los derechos sobre su artículo y cede a la revista el derecho de la primera publicación, no siendo necesaria la autorización de la revista para su difusión una vez publicado. Una vez publicada la versión del editor el autor está obligado a hacer referencia a ella en las versiones archivadas en los repositorios personales o institucionales.
El artículo se publicará con una licencia Creative Commons de Atribución, que permite a terceros utilizar lo publicado siempre que se mencione la autoría del trabajo y la primera publicación en esta revista.
Se recomienda a los autores/as el archivo de la versión de editor en repositorios institucionales.