Erosión del suelo en viñas cultivadas en pendiente bajo sistemas de gestión convencional y orgánica (Valle de Saar-Mosela, Alemania)
DOI:
https://doi.org/10.18172/cig.3161Palabras clave:
erosión, viñedo ecológico, viñedo convencional, simulación de lluvia, caja GerlachResumen
Las viñas alemanas constituyen uno de los usos del suelo más susceptibles a la erosión. Debido a su emplazamiento sobre fuertes pendientes y a prácticas agrícolas poco sostenibles, la escorrentía y las pérdidas de suelo son un grave problema para los viticultores. En el valle del Sarre-Mosela (Renania-Palatinado, Alemania) existe actualmente una tendencia al manejo sostenible del suelo con medidas de protección como el uso de una cubierta vegetal entre calles. Dada la carencia de información sobre las diferencias erosivas entre laboreos convencionales y de conservación en las viñas alemanas, en este estudio comparamos ambos tipos de laboreo. Para ello, en dos parcelas experimentales localizadas en el Valle del Sarre-Mosela se realizaron 22 simulaciones de lluvia y se recogió el sedimento de 4 cajas Gerlach. Los resultados de las pruebas de simulación de lluvia en las viñas con laboreo convencional mostraron un coeficiente de escorrentía del 23.3% y pérdidas de suelo de 33.75 g m-2. En la viña con laboreo de conservación, solo en una de las once simulaciones de lluvia se registró escorrentía y pérdida de suelo. Un total de 33 eventos naturales de lluvia fueron monitoreados con las cajas Gerlach. En las viñas con laboreo convencional las tasas de pérdida de suelo oscilaron entre 3314.63 g m-1 y 6503.77 g m-1 y el volumen de escorrentía superficial entre 172.58 L m-1 y 105.52 L m-1. En cambio, en la parcela con laboreo de conservación los resultados de pérdida de suelo oscilaron entre 143.16 g m-1 y 258.89 g m-1, y entre 105.52 L m-1 y 172.58 L m-1 el volumen de escorrentía. Se observó que el laboreo y las pisadas de los viticultores fueron la causa principal que generó sedimento en los eventos sin registro de escorrentía. Por último, se observó que el manejo convencional generó unos resultados más variables e impredecibles que el laboreo de conservación.Descargas
Citas
Arnáez, J., Lasanta, T., Ruiz-Flaño, P., Ortigosa, L. 2007. Factors affecting runoff and erosion under simulated rainfall in Mediterranean vineyards. Soil & Tillage Research 93, 324-334. DOI: http://doi.org/10.1016/j.still.2006.05.013.
Ashenfelter, O., Storchmann, K. 2010a. Measuring the economic effect of global warming on viticulture using auction, retail, and wholesale prices. Review of Industrial Organization 37, 51-64. DOI: http://doi.org/10.1007/s11151-010-9256-6.
Ashenfelter, O., Storchmann, K. 2010b. Using hedonic models of solar radiation and weather to assess the economic effect of climate change: The case of Mosel Valley vineyards. Review of Economics and Statistics 92, 333-349. DOI: http://doi.org/10.1162/rest.2010.11377.
Biddoccu, M., Ferraris, S., Opsi, F., Cavallo, E. 2016. Long-term monitoring of soil management effects on runoff and soil erosion in sloping vineyards in Alto Monferrato (North-West Italy). Soil & Tillage Research 155, 176-189. DOI: http://doi.org/10.1016/j.still.2015.07.005.
Blavet, D., De Noni, G., Le Bissonnais, Y., Leonard, M., Maillo, L., Laurent, J.Y., Asseline, J., Leprun, J.C., Arshad, M.A., Roose, E. 2009. Effect of land use and management on the early stages of soil water erosion in French Mediterranean vineyards. Soil & Tillage Research 106, 124-136. DOI: http://doi.org/10.1016/j.still.2009.04.010.
Blum, W.E.H. 2005. Functions of Soil for Society and the Environment. Reviews in Environmental Science and Biotechnology 4, 75-79. DOI: http://doi.org/10.1007/s11157-005-2236-x.
Brevik, E.C., Cerdà, A., Mataix-Solera, J., Pereg, L., Quinton, J.N., Six, J., Van Oost, K. 2015. The interdisciplinary nature of soil. SOIL 1, 117-129. DOI: http://doi.org/10.5194/soil-1-117-2015.
Bruggisser, O.T., Schmidt-Entling, M.H., Bacher, S. 2010. Effects of vineyard management on biodiversity at three trophic levels. Biological Conservation 143, 1521-1528. DOI: http://doi.org/10.1016/j.biocon.2010.03.034.
Bryan, R.B. 2000. Soil erodibility and processes of water erosion on hillslope. Geomorphology 32, 385-415. DOI: http://doi.org/10.1016/S0169-555X(99)00105-1.
Cerdà, A. 1997. Soil erosion after land abandonment in a semiarid environment of southeastern Spain. Arid Soil Research and Rehabilitation 11, 163-176. DOI: http://doi.org/10.1080/15324989709381469.
Cerdà, A. 1999. Parent material and vegetation affect soil erosion in eastern Spain. Soil Science Society of America Journal 63 (2), 362-368. DOI: http://doi.org/10.2136/sssaj1999.03615995006300020014x.
Cerdà, A., González-Pelayo, Ó., Giménez-Morera, A., Jordán, A., Pereira, P., Novara, A., Brevik, E.C., Prosdocimi, M., Mahmoodabadi, M., Keesstra, S., Orenes, F.G., Ritsema, C.J. 2016. Use of barley straw residues to avoid high erosion and runoff rates on persimmon plantations in Eastern Spain under low frequency-high magnitude simulated rainfall events. Soil Research 54, 154-165. DOI: http://doi.org/10.1071/SR15092.
Cerdan, O., Govers, G., Le Bissonnais, Y., Van Oost, K., Poesen, J., Saby, N., Gobin, A., Vacca, A., Quinton, J., Auerswald, K., Klik, A., Kwaad, F.J.P.M., Raclot, D., Ionita, I., Rejman, J., Rousseva, S., Muxart, T., Roxo, M.J., Dostal, T. 2010. Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology 122, 167-177. DOI: http://doi.org/10.1016/j.geomorph.2010.06.011.
Chaplot, V., Le Bissonnais, Y. 2000. Field measurements of interrill erosion under ¬different slopes and plot sizes. Earth Surface Processes and Landforms 25, 145-153. DOI: http://doi.org/10.1002/(SICI)1096-9837(200002)25:2<145::AID-ESP51>3.0.CO;2-3.
Chevigny, E., Quiquerez, A., Petit, C., Curmi, P. 2014. Lithology, landscape structure and management practice changes: Key factors patterning vineyard soil erosion at metre-scale spatial resolution. Catena 121, 354-364. DOI: http://doi.org/10.1016/j.catena.2014.05.022.
Corbane, C., Jacob, F., Raclot, D., Albergel, J., Andrieux, P. 2012. Multitemporal analysis of hydrological soil surface characteristics using aerial photos: A case study on a Mediterranean vineyard. International Journal of Applied Earth Observations and Geoinformation 18, 356-367. DOI: http://doi.org/10.1016/j.jag.2012.03.009.
Costantini, E.A.C., Agnelli, A.E., Fabiani, A., Gagnarli, E., Mocali, S., Priori, S., Simoni, S., Valboa, G. 2015. Short-term recovery of soil physical, chemical, micro- and mesobiological functions in a new vineyard under organic farming. SOIL 1, 443-457. DOI: http://doi.org/10.5194/soil-1-443-2015.
Ferrero, A., Usowicz, B., Lipiec, J. 2005. Effects of tractor traffic on spatial variability of soil strength and water content in grass covered and cultivated sloping vineyard. Soil and Tillage Research 84, 127-138. DOI: http://doi.org/10.1016/j.still.2004.10.003.
Galati, A., Gristina, L., Crescimanno, M., Barone, E., Novara, A. 2015. Towards more efficient incentives for agri-environment measures in degraded and eroded vineyards. Land Degradation and Development 26, 557-564. DOI: http://doi.org/10.1002/ldr.2389.
García-Díaz, A., Allas, R.B., Gristina, L., Cerdà, A., Pereira, P., Novara, A. 2016. Carbon input threshold for soil carbon budget optimization in eroding vineyards. Geoderma 271, 144-149. DOI: http://doi.org/10.1016/j.geoderma.2016.02.020.
García-Díaz, A., Bienes, R., Sastre, B., Novara, A., Gristina, L., Cerdà, A. 2017. Nitrogen losses in vineyards under different types of soil groundcover. A field runoff simulator approach in central Spain. Agriculture, Ecosystems and Environment 236, 256-267. DOI: http://doi.org/10.1016/j.agee.2016.12.013.
Gerlach, T. 1967. Hillslope troughs for measuring sediment movement. Revue de Géomorphologie Dynamique 4, 173-175.
Giménez-Morera, A., Sinoga, J.D.R., Cerdà, A. 2010. The impact of cotton geotextiles on soil and water losses from Mediterranean rainfed agricultural land. Land Degradation and Development 21, 210-217. DOI: http://doi.org/10.1002/ldr.971.
Godefroid, S., Koedam, N. 2004. The impact of forest paths upon adjacent vegetation: effects of the path surfacing material on the species composition and soil compaction. Biological Conservation 119, 405-419. DOI: http://doi.org/10.1016/j.biocon.2004.01.003.
Hacisalihoglu, S. 2007. Determination of soil erosion in a steep hill slope with different land-use types: a case study in Mertesdorf (Ruwertal/Germany). Journal of Environmental Biology 28, 433-438. .
Hänsel, P., Schindewolf, M., Eltner, A., Kaiser, A., Schmidt, J. 2016. Feasibility of high-resolution soil erosion measurements by means of rainfall simulations and SfM photogrammetry. Hydrology 3, 38. DOI: http://doi.org/10.3390/hydrology3040038.
Hueso-González, P., Martínez-Murillo, J.F., Ruiz-Sinoga, J.D. 2016. Effects of topsoil treatments on afforestation in a dry Mediterranean climate (southern Spain). Solid Earth 7, 1479-1489. DOI: http://doi.org/10.5194/se-7-1479-2016.
Hueso-González, P., Martínez-Murillo, J.F., Ruiz-Sinoga, J.D. 2017. Beneficios de los acolchados de paja y poda como prácticas para la gestión forestal de montes mediterráneos. Cuadernos de Investigación Geográfica 43. DOI: http://doi.org/10.18172/cig.3142.
Hueso-González, P., Martínez-Murillo, J.F., Ruiz-Sinoga, J.D. 2014. The Impact of organic amendments on forest soil properties under Mediterranean climatic conditions. Land Degradation & Development 25, 604-612. DOI:10.1002/ldr.2296.
Iserloh, T., Fister, W., Seeger, M., Willger, H., Ries, J.B. 2012. A small portable rainfall simulator for reproducible experiments on soil erosion. Soil & Tillage Research 124, 131-137. DOI: http://doi.org/10.1016/j.still.2012.05.016.
Iserloh, T., Ries, J.B., Cerdà, A. and Echeverría, M.T., Fister, W., Geißler, C., Kuhn, N.J., León, F.J., Peters, P., Schindewolf, M., Schmidt, J., Scholten, T., Seeger, M. 2013a. Comparative measurements with seven rainfall simulators on uniform bare fallow land. Zeitschrift für Geomorphologie, Suppl. 57, 11-26. DOI: http://doi.org/10.1127/0372-8854/2012/S-00085.
Iserloh, T., Ries, J.B., Arnáez, J., Boix-Fayos, C., Butzen, V., Cerdà, A., Echeverría, M.T., Fernández-Gálvez, J., Fister, W., Geißler, C., Gómez, J.A., Gómez-Macpherson, H., Kuhn, N.J., Lázaro, R., León, F.J., Martínez-Mena, M., Martínez-Murillo, J.F., Marzen, M., Mingorance, M.D., Ortigosa, L., Peters, P., Regüés, D., Ruiz-Sinoga, J.D., Scholten, T., Seeger, M., Solé-Benet, A., Wengel, R., Wirtz, S. 2013b. European small portable rainfall simulators: A comparison of rainfall characteristics. Catena 110, 100-112. DOI: http://doi.org/10.1016/j.catena.2013.05.013 .
IUSS Working Group WRB, 2014. World Reference Base for Soil Resources 2014, World Soil Resources Report. FAO, Rome..
Keesstra, S.D., Geissen, V., van Schaik, L., Mosse., K., Piiranen, S. 2012. Soil as a filter for groundwater quality. Current Opinions in Environmental Sustainability 4, 507-516. DOI: http://doi.org/10.1016/j.cosust.2012.10.007.
Keesstra, S.D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J.N., Pachepsky, Y., van der Putten, W.H., Bardgett, R.D., Moolenaar, S., Mol, G., Jansen, B., Fresco, L.O. 2016a The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. SOIL 2, 111-128. DOI: http://doi.org/10.5194/soil-2-111-2016.
Keesstra, S., Pereira, P., Novara, A., Brevik, E.C., Azorin-Molina, C., Parras-Alcántara, L., Jordán, A., Cerdà, A. 2016b. Effects of soil management techniques on soil water erosion in apricot orchards. Science of the Total Environment 551-552, 357-366. DOI: http://doi.org/10.1016/j.scitotenv.2016.01.182.
Kertész, Á., Tóth, A., Szalai, Z., Jakab, G., Kozma, K., Booth, C. A., Fullen, M. A., Davies, K. 2007. Geotextile as a tool against soil erosion in vineyards and orchards. WIT Transactions on Ecology and the Environment 102, 9 pp. DOI: http://doi.org/10.2495/SDP070592.
Kinnell, P.I.A. 2016. A review of the design and operation of runoff and soil loss plots. Catena 145, 257-265. DOI: http://doi.org/10.1016/j.catena.2016.06.013 .
Koch, J., Martin, A., Nash, R. 2013. Overview of perceptions of German wine tourism from the winery perspective. International Journal of Wine Business Research 25, 50-74. DOI: http://doi.org/10.1108/17511061311317309.
Kovacs, A.S., Fulop, B., Honti, M. 2012. Detection of hot spots of soil erosion and reservoir siltation in ungauged Mediterranean catchments. Energy Procedia 18, 934-943. DOI: http://doi.org/10.1016/j.egypro.2012.05.108.
Lassu, T., Seeger, M., Peters, P., Keesstra, S.D. 2015. The Wageningen rainfall simulator: Set-up and calibration of an indoor nozzle-type rainfall simulator for soil erosion studies. Land Degradation & Development 26, 604-612. DOI:10.1002/ldr.2360.
Lieskovský, J., Kenderessy, P. 2014. Modelling the effect of vegetation cover and different tillage practices on soil erosion in vineyards: a case study in Vráble (Slovakia) using WATEM/SEDEM. Land Degradation & Development 25, 288-296. DOI: http://doi.org/10.1002/ldr.2162.
Marín, A., Andrades, M., Iñigo, V., Jiménez-Ballesta, R. 2016. Lead and cadmium in soils of La Rioja vineyards, Spain. Land Degradation & Development 27, 1286-1294. DOI: http://doi.org/10.1002/ldr.2471.
Martínez-Casasnovas, J.A., Ramos, M.C., 2006. The cost of soil erosion in vineyard fields in the Penedès-Anoia Region (NE Spain). Catena 68, 194-199. DOI: http://doi.org/10.1016/j.catena.2006.04.007.
Montenegro, A.A.A., Abrantes, J.R.C.B., de Lima, J.L.M.P., Singh, V.P., Santos, T.E.M. 2013. Impact of mulching on soil and water dynamics under intermittent simulated rainfall. Catena 109, 139-149. DOI: http://doi.org/10.1016/j.catena.2013.03.018.
Morvan, X., Naisse, C., Malam Issa, O., Desprats, J.F., Combaud, A., Cerdan, O. 2014. Effect of ground-cover type on surface runoff and subsequent soil erosion in Champagne vineyards in France. Soil Use and Management 30, 372-381. DOI: http://doi.org/10.1111/sum.12129.
Nearing, M.A., Govers, G., Norton, L.D. 1999. Variability in soil erosion data from replicated plots. Soil Science Society of America Journal 63, 1829-1835. DOI: http://doi.org/10.2136/sssaj1999.6361829x.
Novák, T.J., Incze, J., Spohn, M., Glina, B., Giani, L. 2014. Soil and vegetation transformation in abandoned vineyards of the Tokaj Nagy-Hill, Hungary. Catena 123, 88-98. DOI: http://doi.org/10.1016/j.catena.2014.07.017.
Novara, A., Gristina, L., Saladino, S.S., Santoro, A., Cerdà, A. 2011. Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard. Soil & Tillage Research 117, 140-147. DOI: http://doi.org/10.1016/j.still.2011.09.007.
Novara, A., Cerdà, A., Dazzi, C., Lo Papa, G., Santoro, A., Gristina, L. 2015. Effectiveness of carbon isotopic signature for estimating soil erosion and deposition rates in Sicilian vineyards. Soil & Tillage Research 152, 1-7. DOI: http://doi.org/10.1016/j.still.2015.03.010.
Peter, K.D., Ries, J.B. 2013. Infiltration rates affected by land levelling measures in the Souss valley, South Morocco. Zeitschrift für Geomorphologie 57, 59-72. DOI: http://doi.org/10.1127/0372-8854/2012/S-00124.
Probst, B., Schüler, C., Joergensen, R.G. 2008. Vineyard soils under organic and conventional management—microbial biomass and activity indices and their relation to soil chemical properties. Biology and Fertility of Soils 44, 443-450. DOI: http://doi.org/10.1007/s00374-007-0225-7.
Prosdocimi, M., Burguet, M., Di Prima, S., Sofia, G., Terol, E., Rodrigo Comino, J., Cerdà, A., Tarolli, P. 2016a. Rainfall simulation and Structure-from-Motion photogrammetry for the analysis of soil water erosion in Mediterranean vineyards. Science of the Total Environment 574, 204-215. DOI: http://doi.org/10.1016/j.scitotenv.2016.09.036.
Prosdocimi, M., Jordán, A., Tarolli, P., Keesstra, S., Novara, A., Cerdà, A. 2016b. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Science of the Total Environment 547, 323-330. DOI: http://doi.org/10.1016/j.scitotenv.2015.12.076.
Prosdocimi, M., Tarolli, P., Cerdà, A. 2017. Mulching practices for reducing soil water erosion: A review. Earth-Science Reviews. DOI: http://doi.org/10.1016/j.earscirev.2016.08.006.
Quinn, N.W., Morgan, R.P.C., Smith, A.J. 1980. Simulation of soil erosion induced by human trampling. Journal of Environmental Management 10, 155-165..
Quiquerez, A., Brenot, J., Garcia, J.-P., Petit, C. 2008. Soil degradation caused by a high-intensity rainfall event: Implications for medium-term soil sustainability in Burgundian vineyards. Catena 73, 89-97. DOI: http://doi.org/10.1016/j.catena.2007.09.007.
Quiquerez, A., Chevigny, E., Allemand, P., Curmi, P., Petit, C., Grandjean, P. 2014. Assessing the impact of soil surface characteristics on vineyard erosion from very high spatial resolution aerial images (Côte de Beaune, Burgundy, France). Catena 116, 163-172. DOI: http://doi.org/10.1016/j.catena.2013.12.002.
Raclot, D., Le Bissonnais, Y., Louchart, X., Andrieux, P., Moussa, R., Voltz, M. 2009. Soil tillage and scale effects on erosion from fields to catchment in a Mediterranean vineyard area. Agriculture Ecosystems and Environment 134, 201-210. DOI: http://doi.org/10.1016/j.agee.2009.06.019.
Ramos, M.C., Martínez-Casasnovas, J.A. 2006. Impact of land levelling on soil moisture and runoff variability in vineyards under different rainfall distributions in a Mediterranean climate and its influence on crop productivity. Journal of Hydrology 321, 131-146. DOI: http://doi.org/10.1016/j.jhydrol.2005.07.055.
Ramos, M.C., Martínez-Casasnovas, J.A. 2007. Soil loss and soil water content affected by land levelling in Penedès vineyards, NE Spain. Catena 71, 210-217. DOI: http://doi.org/10.1016/j.catena.2007.03.001.
Reinecke, A.J., Albertus, R.M.C., Reinecke, S.A., Larink, O. 2008. The effects of organic and conventional management practices on feeding activity of soil organisms in vineyards. African Zoology 43, 66-74. DOI: http://doi.org/10.1080/15627020.2008.11407408.
Reiter, P., Gutjahr, O., Schefczyk, L., Heinemann, G., Casper, M. 2016. Bias correction of ENSEMBLES precipitation data with focus on the effect of the length of the calibration period. Meteorologische Zeitschrift 25, 85-96. DOI: http://doi.org/10.1127/metz/2015/0714.
Richter, G. 1980. On the soil erosion problem in the temperate humid Area of Central Europe. GeoJournal 4, 279-287..
Rodrigo Comino, J., Brings, C., Lassu, T., Iserloh, T., Senciales, J., Martínez Murillo, J., Ruiz Sinoga, J., Seeger, M., Ries, J. 2015. Rainfall and human activity impacts on soil losses and rill erosion in vineyards (Ruwer Valley, Germany). Solid Earth 6, 823-837. DOI:10.5194/se-6-823-2015.
Rodrigo Comino, J., Iserloh, T., Lassu, T., Cerdà, A., Keestra, S.D., Prosdocimi, M., Brings, C., Marzen, M., Ramos, M.C., Senciales, J.M., Ruiz Sinoga, J.D., Seeger, M., Ries, J.B., 2016a. Quantitative comparison of initial soil erosion processes and runoff generation in Spanish and German vineyards. Science of the Total Environment 565, 1165-1174. DOI: http://doi.org/10.1016/j.scitotenv.2016.05.163.
Rodrigo Comino, J., Iserloh, T., Morvan, X., Malam Issa, O., Naisse, C., Keesstra, S.D., Cerdà, A., Prosdocimi, M., Arnáez, J., Lasanta, T., Ramos, M.C., Marqués, M.J., Ruiz Colmenero, M., Bienes, R., Ruiz Sinoga, J.D., Seeger, M., Ries, J.B. 2016b. Soil erosion processes in European vineyards: A qualitative comparison of rainfall simulation measurements in Germany, Spain and France. Hydrology 3, 6. DOI: http://doi.org/10.3390/hydrology3010006.
Rodrigo Comino, J., Quiquerez, A., Follain, S., Raclot, D., Le Bissonnais, Y., Casalí, J., Giménez, R., Cerdà, A., Keesstra, S.D., Brevik, E.C., Pereira, P., Senciales, J.M., Seeger, M., Ruiz Sinoga, J.D., Ries, J.B. 2016c. Soil erosion in sloping vineyards assessed by using botanical indicators and sediment collectors in the Ruwer-Mosel Valley. Agriculture, Ecosystems & Environment 233, 158-170. DOI: http://doi.org/10.1016/j.agee.2016.09.009.
Rodrigo Comino, J., Ruiz Sinoga, J.D., Senciales González, J.M., Guerra-Merchán, A., Seeger, M., Ries, J.B. 2016d. High variability of soil erosion and hydrological processes in Mediterranean hillslope vineyards (Montes de Málaga, Spain). Catena 145, 274-284. DOI: ht tp://doi.org/10.1016/j.catena.2016.06.012.
Rodrigo-Comino, J, Seeger, M., Senciales González, J.M., Ruiz Sinoga, J.D., Ries, J.B. 2016e. Variación espacio-temporal de los procesos hidrológicos del suelo en viñedos con elevadas pendientes (valle del Ruwer-Mosela, Alemania). Cuadernos de Investigación Geográfica 42 (1), 281-306. DOI: http://doi.org/10.18172/cig.2934.
Ruiz-Colmenero, M., Bienes, R., Marques, M.J. 2011. Soil and water conservation dilemmas associated with the use of green cover in steep vineyards. Soil and Tillage Research 117, 211-223. DOI: http://doi.org/10.1016/j.still.2011.10.004.
Ruiz-Colmenero, M., Bienes, R., Eldridge, D.J., Marques, M.J. 2013. Vegetation cover reduces erosion and enhances soil organic carbon in a vineyard in the central Spain. Catena 104, 153-160. DOI: http://doi.org/10.1016/j.catena.2012.11.007.
Rüttimann, M., Prasuhn, V. 1993. Feldmessgerät zur Erfassung von flächenhafter Bodenerosion und Stofffrachten aus Maisflächen. Zeitschrift für Kulturtechnik und Landentwicklung 34, 338-348..
Rüttimann, M., Schaub, D., Prasuhn, V., Rüegg, W. 1995. Measurement of runoff and soil erosion on regularly cultivated fields in Switzerland — some critical considerations. Catena 25, 127-139. DOI: http://doi.org/10.1016/0341-8162(95)00005-D.
Saleh, A. 1993. Soil roughness measurement: Chain method. Journal of Soil and Water Conservation 48, 527-529..
Sastre, B., Barbero-Sierra, C., Bienes, R., Marques, M.J., García-Díaz, A. 2016. Soil loss in an olive grove in Central Spain under cover crops and tillage treatments, and farmer perceptions. Journal of Soils and Sediments 1-16. DOI: http://doi.org/10.1007/s11368-016-1589-9.
Seeger, M. 2007. Uncertainty of factors determining runoff and erosion processes as quantified by rainfall simulations. Catena 71, 56-67. DOI: http://doi.org/10.1016/j.catena.2006.10.005.
Simonson, R.W. 1959. Outline of a generalized theory of soil genesis. Soil Science Society of America Proceedings 23, 152-156..
Smith, P., Cotrufo, M.F., Rumpel, C., Paustian, K., Kuikman, P.J., Elliott, J.A., McDowell, R., Griffiths, R.I., Asakawa, S., Bustamante, M., House, J.I., Sobocká, J., Harper, R., Pan, G., West, P.C., Gerber, J.S., Clark, J.M., Adhya, T., Scholes, R.J., Scholes, M.C. 2015. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. SOIL 1, 665-685. DOI: http://doi.org/10.5194/soil-1-665-2015.
Stigter, C.J. 1984. Mulching as a traditional method of microclimate management. Archives of Meteorology, Geophysics and Bioclimatology B, 35, 147-154.
Tarolli, P. 2016. Humans and the Earth’s surface. Earth Surface Processes and Landforms 41, 2301-2304. DOI: http://doi.org/10.1002/esp.4059.
Tarolli, P., Sofia, G. 2016. Human topographic signatures and derived geomorphic processes across landscapes. Geomorphology 255, 140-161. DOI: http://doi.org/10.1016/j.geomorph.2015.12.007.
Xiao, L., Hu, Y., Greenwood, P., Kuhn, N.J. 2015. A combined raindrop aggregate destruction test-settling tube (RADT-ST) approach to identify the settling velocity of sediment. Hydrology 2, 176. DOI: http://doi.org/10.3390/hydrology2040176.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
El autor o autora conserva todos los derechos sobre su artículo y cede a la revista el derecho de la primera publicación, no siendo necesaria la autorización de la revista para su difusión una vez publicado. Una vez publicada la versión del editor el autor está obligado a hacer referencia a ella en las versiones archivadas en los repositorios personales o institucionales.
El artículo se publicará con una licencia Creative Commons de Atribución, que permite a terceros utilizar lo publicado siempre que se mencione la autoría del trabajo y la primera publicación en esta revista.
Se recomienda a los autores/as el archivo de la versión de editor en repositorios institucionales.