Impact of Fermi's Problem-Solving Environment on The Complexity and Flexibility of Pre-Service Teachers' Strategies

Authors

DOI:

https://doi.org/10.18172/con.6480

Keywords:

problem solving, mathematical modelling, Fermi problems, solving environments, ChatGPT

Abstract

Problem-solving and modelling competencies are central to the Mathematics curriculum. Fermi problems are ideal for students to develop these competencies, as they present real and open situations that promote, on the one hand, the inclusion of realistic assumptions that increase the complexity of the solutions, and on the other hand, flexibility in the use of multiple strategies. However, primary school teachers do not introduce these problems in their classrooms and have difficulties solving them satisfactorily. We aim to find out which solving environment is most effective for pre-service teachers to develop complex strategies and use them flexibly throughout a sequence of Fermi problems. To this end, we present a quasi-experimental study with three solving environments: 55 pre-service teachers solve Fermi problems in the classroom, evoking the situation; 41 pre-service teachers solve them by experimenting at the real problem site; and 41 pre-service teachers solve them by questioning ChatGPT. Using a mixed methods approach, we analyse the strategies completed, the realistic assumptions, the types of strategy used and the participants’ flexibility for each solving environment. A combination of variable dependence and variance analysis allows us to compare the influence of the solving environment on the rate of completed strategies and their level of complexity, as well as on which strategies are most used and the pre-service teachers’ level of flexibility. The results show that, although completing a strategy is accessible to pre-service teachers regardless of the solving environment, there are significant differences in the complexity of these strategies according to the environment and also in the flexibility demonstrated. The on-site experimentation environment is the most effective for developing these skills.

Downloads

Download data is not yet available.

References

Albarracín, L., Segura, C., Ferrando, I. y Gorgorió, N. (2022). Supporting mathematical modelling by upscaling real context in a sequence of tasks. Teaching Mathematics and its Applications: An International Journal of the IMA, 41(3), 183-197. https://doi.org/10.1093/teamat/hrab027

Ärlebäck, J. B. (2009). On the use of realistic Fermi problems for introducing mathematical modelling in school, The Mathematics Enthusiast, 6(3), 331-364. https://doi.org/10.54870/1551-3440.1157

Buchholtz, N. (2021). Processos de modelação dos alunos envolvidos em trilhos matemáticos. Quadrante, 30(1), 140-157. https://doi.org/10.48489/quadrante.23699

Carlson, J. E. (1997). Fermi problems on gasoline consumption. The Physics Teacher, 35, 308-309. https://doi.org/10.1119/1.2344696

Efthimiou, C. J. y Llewellyn, R. A. (2007). Cinema, Fermi problems and general education. Physics education, 42(3), 253.

Elia, I., van den Heuvel-Panhuizen, M. y Koliopoulos, D. (2009). An investigation of young children’s flexibility in solving addition tasks through the use of multiple solutions. Educational Studies in Mathematics, 71(1), 15-37. https://doi.org/10.1007/s10649-008-9156-3

Ferrando, I. y Albarracín, L. (2021). Students from grade 2 to grade 10 solving a Fermi problem: analysis of emerging models. Mathematics Education Research Journal, 33(1), 61-78. https://doi.org/10.1007/s13394-019-00292-z

Ferrando, I., Segura, C. y Pla-Castells, M. (2020). Relations entre contexte, situation et schéma de résolution dans les problèmes d’estimation. Canadian Journal of Science, Mathematics and Technology Education, 20(3), 557-573. https://doi.org/10.1007/s42330-020-00102-w

Galbraith, P. y Stillman, G. (2001). Assumptions and context: Pursuing their role in modelling activity. En J. F. Matos, W. Blum, S. K. Houston y S. P. Carreira (Eds.), Modelling and mathematics education: ICTMA 9: Applications in science and technology (pp. 300-310). Horwood Publishing.

Haberzettl, N., Klett, S. y Schukajlow, S. (2018). Mathematik rund um die Schule – Modellieren mit Fermi-Aufgaben [Mathematics around school – Modelling with Fermi tasks]. En K. Eilerts y K. Skutella (Eds.), Neue Materialien für einen realitätsbezogenen Mathematikunterricht 5. Ein ISTRON-Band für die Grundschule (pp. 31-41). Springer Spectrum.

Hartmann, L. M. y Schukajlow, S. (2021). Interest and Emotions While Solving Real-World Problems Inside and Outside the Classroom. En Leung, F. K. S., Stillman, G. A., Kaiser, G., Wong, K. L. (Eds.), Mathematical Modelling Education in East and West. Springer. https://doi.org/10.1007/978-3-030-66996-6_13

Heinze, A., Star, J. R. y Verschaffel, L. (2009). Flexible and adaptive use of strategies and representations in mathematics education. ZDM Mathematics Education, 41(5), 535-540. https://doi.org/10.1007/s11858-009-0214-4

Jablonski, S. (2023). Indoors vs. Outdoors: Student Perception of Different Modelling Settings. Research in Integrated STEM Education, 1(3), 403-421. https://doi.org/10.1163/27726673-bja00016

Keune, M. y Henning, H. (2003). Modelling and spreadsheet calculation. En Q. X. Ye, W. Blum, S.-K. Houston y Q. Y. Yian (Eds.), Mathematical modelling in education and culture (pp. 101-110). Horwood Publishing.

Kuhail, M., Alturki, N., Alramlawi, S. y Alhejori, K. (2023). Interacting with educational chatbots: A systematic review. Education and Information Technologies, 28(1), 973-1018. https://doi.org/10.1007/s10639-022-11177-3

Lo, C. K. (2023). What Is the Impact of ChatGPT on Education? A Rapid Review of the Literature. Education Sciences, 13, 410. https://doi.org/10.3390/educsci13040410

López-Simó, V. y Rezende, M. F. (2024). Challenging ChatGPT with Different Types of Physics Education Questions. The Physics Teacher, 62, 290-294. https://doi.org/10.1119/5.0160160

Maass, K., Geiger, V., Ariza, M. R. y Goos, M. (2019). The Role of Mathematics in interdisciplinary STEM education. ZDM Mathematics Education, 51, 869-884. https://doi.org/10.1007/s11858-019-01100-5

Montejo-Gámez, J., López-Centella, E. y Fernández-Ahumada, E. (2024). Solving Estimation Tasks: Novel Features of the Emerging Models When Three-Dimensional Geometry Becomes Relevant. En H. S. Siller, V. Geiger, G. Kaiser, (Eds.), Researching Mathematical Modelling Education in Disruptive Times (pp. 607-618). Springer.

Noster, N., Gerber, S. y Siller, H. S. (2024). Pre-Service Teachers’ Approaches in Solving Mathematics Tasks with ChatGPT. Digital Experiences in Mathematics Education, 1-25. https://doi.org/10.1007/s40751-024-00155-8

Pepin, B., Buchholtz, N. y Salinas-Hernández, U. (2025). A Scoping Survey of ChatGPT in Mathematics Education. Digital Experiences in Mathematics Education. https://doi.org/10.1007/s40751-025-00172-1

Segura, C. y Ferrando, I. (2023). Pre-service teachers’ flexibility and performance in solving Fermi problems. Educational Studies in Mathematics, 113(2), 207-227. https://doi.org/10.1007/s10649-023-10220-5

Segura, C., Ferrando, I., y Albarracín, L. (2021). Análisis de los factores de complejidad en planes de resolución individuales y resoluciones grupales de problemas de estimación de contexto real. Quadrante, 30(1), 31–51. https://doi.org/10.48489/quadrante.23592

Segura, C., Ferrando, I., y Albarracín, L. (2023). Does collaborative and experiential work influence the solution of real-context estimation problems? A study with prospective teachers. The Journal of Mathematical Behavior, 70, 101040. https://doi.org/10.1016/j.jmathb.2023.101040

Segura, C., Gallart, C. y Ferrando, I. (2025). Influence of pre-service primary school teachers’ prior knowledge of measurement and measurement estimation in solving modelling problems. Journal of Mathematics Teacher Education. https://doi.org/10.1007/s10857-025-09685-3

Spreitzer et al (2024) Mathematical Modelling Abilities of Artificial Intelligence Tools: The Case of ChatGPT. Education Sciences, 14, 698. https://doi.org/10.3390/educsci14070698

Sriraman, B., y Knott, L. (2009). The mathematics of estimation: Possibilities for interdisciplinary pedagogy and social consciousness. Interchange, 40(2), 205–223.

Star, J. R., y Rittle-Johnson, B. (2008). Flexible problem solving: The roles of strategy choice and strategy flexibility in knowing when and how to use procedures. The Journal of Problem Solving, 2(2), 71-91. https://doi.org/10.7771/1932-6246.1042

Tangney, B., y Bray, A. (2013). Mobile technology, maths education & 21C learning. In Proceedings of the 12th world conference on mobile and contextual learning (pp. 20–27). College of the North Atlantic–Qatar.

Toalongo, X., Trelles, C. y Alsina, Ángel. (2024). Los Problemas de Fermi y las Modelling Eliciting Activities como un recurso para fomentar la Modelización Matemática entre el alumnado de Educación Primaria. Edma 0-6: Educación Matemática En La Infancia, 13(1), 58-92. https://doi.org/10.24197/edmain.1.2024.58-92

Verschaffel, L., Greer, B. y de Corte, E. (2000). Making sense of word problems. Swets & Zeitlinger.

Zhang, K. y Aslan, A.B. (2021). AI technologies for education: Recent research & future directions. Computer and Education: Artificial Intelligence 2, 100025. https://doi.org/10.1016/j.caeai.2021.100025

Published

2025-04-25

How to Cite

Gallart, C., Segura, C., & Albarracín, L. (2025). Impact of Fermi’s Problem-Solving Environment on The Complexity and Flexibility of Pre-Service Teachers’ Strategies. Contextos Educativos. Revista De Educación, (35), 139–164. https://doi.org/10.18172/con.6480