From visualization to demonstration

Authors

  • Tomás Ortega del Rincón Universidad de Valladolid
  • Cristina Pecharromán Gómez Universidad de Valladolid

DOI:

https://doi.org/10.18172/con.2717

Keywords:

Display, proof, regular pentagon, exact construction, didactics of mathematics

Abstract

The purpose of this research is to assess the reasoning of a group of Chilean mathematics teachers and a group of students of a “High School Teacher” master’s degree, about the assurance of the accuracy, or not, of some geometric constructions of a regular pentagon inscribed in a circumference. Data analysis reveals that, in general, they do not use the construction procedures to argue about the accuracy and rigor of the construction. Instead of it, they give justifications based on sensory perceptions, memories or they use arithmetic procedures that fail to coordinate with the visualization of the construction process and geometric construction itself.

Downloads

Download data is not yet available.

Author Biography

Tomás Ortega del Rincón, Universidad de Valladolid

Doctor en Matemáticas por la Universidad de Valladolid, España

Profesor Catedrático de Didáctica de la Matemática de la Universidad de Valladolid, España

References

Ball, D. L., Thames, M. H., y Phelps, G. (2008). Content knowledge for teaching: What makes its special? Journal of Teacher Education, 59(5), 389-407.

Bataille, M. (2009). Another compass-only construction of the golden section and of the regular pentagon. Forum Geom., 8, 167-169.

De Guzmán, M. (1996). El rincón de la pizarra. Madrid: Pirámide.

Duval, R. (1995). Figures Geométriques et discours mathématique. En Sémiosis et pensée humaine: registres sémiotiques et apprentissages intellectuels (pp. 173- 207). New York: Peter Lang.

Eisenmann, P., Kopka, J., Ondrušová, J., y Pˇribyl, J. (2013). The strategy of reformulation of a problem. En M. Billich (Ed.), Mathematica IV. Proceedings of the Polish-Czech-Slovak mathematical conference, Catholic University (pp. 31-36). Ružomberok: Verbum, Catholic University in Ružomberok Press.

Fernández, T. (2013). La investigación en visualización y razonamiento espacial. Pasado, presente y futuro. En A. Berciano, G. Gutiérrez, N. Climent y A. Estepa (Eds.), Investigación en Educación Matemática XVII (pp. 19-42). Bilbao: Sociedad Española de Investigación en Educación Matemática (SEIEM).

Hofsteter, K. (2013). A simple compass-only construction of the regular pentagon. Forum Geom., 8, 147-148.

Jakobsen, A., Thames, M. H., y Ribeiro, M. (2013). Delineating issues related to Horizon Content Knowledge for mathematics teaching. En B. Ubuz y M.A. Mariotti (Eds.), Actas del CERME 8 (pp. 3055-3064). Antalya, Turquía: ERME.

Lord, N. (2010). From hexagon to pentagon. SYMmetryplus, 38, 14.

Miles, D., y Pritchard, C. (2009). Three trigonometric results from a regular pentagon. Math. Sch. (Leicester), 38(1), 33-34.

Presmeg, N. C. (1997). Generalization using imagery in mathematics. En L. D. English (Ed.), Mathematical Reasoning: analogies, metaphors and metonymies in mathematics learning (pp. 299-312). Mahwah, NJ: Erlbaum.

Presmeg, N. C. (2006). Research on visualization in learning and teaching mathematics. En A. Gutiérrez y P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future (pp. 205-235). Rotterdam, The Netherlands: Sense Publishers.

Presmeg, N. (2011). Overcoming Pedagogical Barriers Associated with Exploratory Tasks in a College Geometry Course. En O. Zaslavsky y P. Sullivan (Eds.), Constructing Knowledge for Teaching Secondary Mathematics (pp. 279-290). New York: Springer.

Pritchard, C. (2013). Fibonacci pegs and an angel theorem. Math. Sch. (Leicester), 41(5), 10-11.

Schoenfeld, A. (2010). How we think. New York: Routledge.

Shulman, L. S. (1986). Those who understand. Knowledge growth in teaching. Educational Researcher, 15(2), 4-14.

Published

2016-03-22

How to Cite

Ortega del Rincón, T., & Pecharromán Gómez, C. (2016). From visualization to demonstration. Contextos Educativos. Revista De Educación, 45–64. https://doi.org/10.18172/con.2717

Issue

Section

Research, Review and Discussant Articles