Competencies and difficulties of undergraduate students facing a problem involving conjecture and proof
DOI:
https://doi.org/10.18172/con.6463Keywords:
conjecture, proof, Toulmin's model, ontosemiotic approach, undergraduate studentsAbstract
Despite the importance of proof for developing students' mathematical competence, understanding how its learning occurs remains a challenge for both researchers in Mathematics Education as well as teachers. In this study, we analyze the competence of first year university students in solving a problem involving the conjecture and proof of arithmetic properties. Adopting a predominantly qualitative methodological approach, we integrate the Toulmin's model with tools from the Onto-semiotic Approach to characterize and analyze the practices developed by students. Specifically, we identify the objects and processes involved in the argumentations, relating them to the elements of the Toulmin's model, and examine the degree of generalization achieved. This integration enables us to gain deeper insight into students' competencies with proof and the difficulties they encounter. The results of our study show that, while most students use correct deductive argumentations to validate or refute conjectures explicitly stated in the given problem, they face significant difficulties when formulating conjectures that are not explicitly provided and in developing their proofs. Furthermore, many students fail to achieve the expected level of formalization at the university level, and when they do, it does not necessarily translate to greater relevance in their solutions. These findings indicate that the instruction that the students have received thus far has been insufficient to develop a solid understanding of proof. We conclude by emphasizing the need to focus on how proof is addressed in current instructional processes to tackle the identified difficulties and to create opportunities for meaningful learning.
Downloads
References
Arce, M. y Conejo, L. (2019). Razonamientos y esquemas de prueba evidenciados por estudiantes para maestro: relaciones con el conocimiento matemático. En J. M. Marbán, M. Arce, A. Maroto, J. M. Muñoz y Á. Alsina (Eds.), Investigación en educación matemática XXIII (pp. 163-172). SEIEM.
Aricha-Metzer, I. y Zaslavsky, O. (2019). The nature of students’ productive and non-productive example-use for proving. Journal of Mathematical Behavior, 53, 304-322. https://doi.org/10.1016/j.jmathb.2017.09.002
Buchbinder, O. y McCrone, S. (2020). Preservice teachers learning to teach proof through classroom implementation: Successes and challenges. Journal of Mathematical Behavior, 58. https://doi.org/10.1016/j.jmathb.2020.100779
Buchbinder, O. y Zaslavsky, O. (2019). Strengths and inconsistencies in students’ understanding of the roles of examples in proving. Journal of Mathematical Behaviour, 53, 129-147. https://doi.org/10.1016/j.jmathb.2018.06.010
Burgos, M., Tizón-Escamilla, N. y Godino, J. D. (2024). Expanded model for elementary algebraic reasoning levels. Eurasia Journal of Mathematics Science and Technology Education, 20(7). https://doi.org/10.29333/ejmste/14753
Cohen, L., Manion, L. y Morrison, K. (2018). Research methods in education. Routledge. https://doi.org/10.4324/9781315456539
Ellis, A., Lockwood, E. y Ozaltun-Celik, A. (2022). Empirical re-conceptualization: From empirical generalizations to insight and understanding. Journal of Mathematical Behavior, 65. https://doi.org/10.1016/j.jmathb.2021.100928
Font, V., Godino, J. D. y D’Amore, B. (2007). Enfoque ontosemiótico de las representaciones en educación matemática. For the learning of mathematics, 27(2).
Fredriksdotter, H., Norén N. y Bråting, N. (2022). Investigating grade-6 students’ justifications during mathematical problem solving in small group interaction. Journal of Mathematical Behavior, 67, 100972. https://doi.org/10.1016/j.jmathb.2022.100972
Gascón, J. (2020). How to argue with coherence. International Journal for Theory, History and Foundations of Science, 35(3), 327-344. https://doi.org/10.1387/theoria.20435
Godino, J. D. (2024). Enfoque ontosemiótico en educación matemática. Fundamentos, herramientas y aplicaciones. McGraw-Hill, Aula Magna.
Inglis, M., Mejía-Ramos, J. y Simpson, A. (2007). Modelling mathematical argumentation: The importance of qualification. Educational Studies in Mathematics, 66, 3-21. https://doi.org/10.1007/s10649-006-9059-8
Knipping, C. y Reid, D. (2019). Argumentation analysis for early career researchers. En G. Kaiser y N. Presmeg (Eds.), Compendium for early career researchers in mathematics education (pp. 3-31). Springer. https://doi.org/10.1007/978-3-030-15636-7_1
Larios-Osorio, V., Spíndola-Yáñez, P. I., Cuevas-Salazar, O. y Castro, J. (2021). Conflictos semióticos y niveles de algebrización en aspirantes a Ingeniería. Educación Matemática, 33(3), 263-289. https://doi.org/10.24844/em3303.10
Lew, K. y Zazkis, D. (2019). Undergraduate mathematics students’ at-home exploration of a prove-or-disprove task. Journal of Mathematical Behavior, 54. https://doi.org/10.1016/j.jmathb.2018.09.003
Mariotti, M. y Pedemonte, B. (2019). Intuition and proof in the solution of conjecturing problems. ZDM, 51(5), 759-777. https://doi.org/10.1007/s11858-019-01059-3
Marraud, H. (2014). Argumentos a fortiori. International Journal for Theory, History and Foundations of Science, 29(1). 99-112. https://doi.org/10.1387/theoria.6275
Milanesio, B. y Burgos, M. (2024). Significados personales sobre la demostración matemática de estudiantes al inicio de la educación superior. Educación Matemática, 36(3), 206-241. https://doi.org/10.24844/EM3603.08
Molina, O., Font, V. y Pino-Fan, L. (2019). Estructura y dinámica de argumentos analógicos, abductivos y deductivos: un curso de geometría del espacio como contexto de reflexión. Enseñanza de las Ciencias, 37(1), 93-116. https://doi.org/10.5565/rev/ensciencias.2484
Molina, O. y Pino-Fan, L. (2018). Diferencias entre discursos colectivos (verbales) e individuales (escritos) al hacer demostraciones en geometría: una explicación a partir del sistema de normas. Educación Matemática, 30(2), 73-105. https://doi.org/10.24844/EM3002.04
Molina, O. y Samper, C. (2019). Tipos de problemas que provocan la generación de argumentos inductivos, abductivos y deductivos. Bolema, 33, 109-134. https://doi.org/10.1590/1980-4415v33n63a06
Morales-Ramírez, G., Rubio-Goycochea, N. y Larios-Osorio, V. (2021). Tipificación de argumentos producidos por las prácticas matemáticas de alumnos del nivel medio en ambientes de geometría dinámica. Bolema, 35, 664-689. https://doi.org/10.1590/1980-4415v35n70a06
Papadaki, C., Reid, D. y Knipping, C. (2019). Abduction in argumentation: Two representations that reveal its different functions. En T. Jankvist, M. Panhuizen y M. Veldhuis (Eds.), Proceedings of the eleventh congress of the european society for research in mathematics education (pp. 310-317). Utrecht University and ERME.
Reuter, F. (2023). Explorative mathematical argumentation: A theoretical framework for identifying and analysing argumentation processes in early mathematics learning. Educational Studies in Mathematics, 112, 415-435. https://doi.org/10.1007/s10649-022-10199-5
Soler-Álvarez, M. y Manrique, V. (2014). El proceso de descubrimiento en la clase de matemáticas: los razonamientos abductivo, inductivo y deductivo. Enseñanza de las Ciencias, 32(2), 191-219. https://doi.org/10.5565/rev/ensciencias.1026
Staples, M. y Conner, A. (2022). Introduction: Conceptualizing argumentation, justification, and proof in mathematics education. En K. Bieda, A. Conner, K. Kosko y M. Staples (Eds.), Conceptions and consequences of mathematical argumentation, justification, and proof (pp. 1-10). Springer. https://doi.org/10.1007/978-3-030-80008-6
Stylianides, G. J., Stylianides, A. J. y Moutsios, A. (2023). Proof and proving in school and university mathematics education research: A systematic review. ZDM, 1-13. https://doi.org/10.1007/s11858-023-01518-y
Stylianides, G. J., Stylianides, A. J. y Weber, K. (2017). Research on the teaching and learning of proof: Taking stock and moving forward. En J. Cai (Ed.), Compendium for research in mathematics education (pp. 237-266). National Council of Teachers of Mathematics.
Toulmin, S. (2003). The Uses of Arguments. Cambridge University Press. https://doi.org/10.1017/CBO9780511840005
Varghese, T. (2017). Proof, proving and mathematics curriculum. Transformations, 3(1).
Vergel, R., Radford, L. y Rojas, P. J. (2022). Zona conceptual de formas de pensamiento aritmético “sofisticado” y proto-formas de pensamiento algebraico: Una contribución a la noción de zona de emergencia del pensamiento algebraico. Bolema, 36(74), 1174-1192. https://doi.org/10.1590/1980-4415v36n74a11
Weber, K., Lew, K. y Mejía Ramos, J. (2020). Using expectancy value theory to account for students' mathematical justifications. Cognition and Instruction, 38(1), 27-56. https://doi.org/10.1080/07370008.2019.1636796
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Bettina Milanesio, María Burgos

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain copyright of articles and authorize Contextos Educativos. Revista de Educación the first publication. They are free to share and redistribute the article without obtaining permission from the publisher as long as they give appropriate credit to the editor and the journal.
Self-archiving is allowed too. In fact, it is recommendable to deposit a PDF version of the paper in academic and/or institutional repositories.