Competencies and difficulties of undergraduate students facing a problem involving conjecture and proof

Authors

DOI:

https://doi.org/10.18172/con.6463

Keywords:

conjecture, proof, Toulmin's model, ontosemiotic approach, undergraduate students

Abstract

Despite the importance of proof for developing students' mathematical competence, understanding how its learning occurs remains a challenge for both researchers in Mathematics Education as well as teachers. In this study, we analyze the competence of first year university students in solving a problem involving the conjecture and proof of arithmetic properties. Adopting a predominantly qualitative methodological approach, we integrate the Toulmin's model with tools from the Onto-semiotic Approach to characterize and analyze the practices developed by students. Specifically, we identify the objects and processes involved in the argumentations, relating them to the elements of the Toulmin's model, and examine the degree of generalization achieved. This integration enables us to gain deeper insight into students' competencies with proof and the difficulties they encounter. The results of our study show that, while most students use correct deductive argumentations to validate or refute conjectures explicitly stated in the given problem, they face significant difficulties when formulating conjectures that are not explicitly provided and in developing their proofs. Furthermore, many students fail to achieve the expected level of formalization at the university level, and when they do, it does not necessarily translate to greater relevance in their solutions. These findings indicate that the instruction that the students have received thus far has been insufficient to develop a solid understanding of proof. We conclude by emphasizing the need to focus on how proof is addressed in current instructional processes to tackle the identified difficulties and to create opportunities for meaningful learning.

Downloads

Download data is not yet available.

References

Arce, M. y Conejo, L. (2019). Razonamientos y esquemas de prueba evidenciados por estudiantes para maestro: relaciones con el conocimiento matemático. En J. M. Marbán, M. Arce, A. Maroto, J. M. Muñoz y Á. Alsina (Eds.), Investigación en educación matemática XXIII (pp. 163-172). SEIEM.

Aricha-Metzer, I. y Zaslavsky, O. (2019). The nature of students’ productive and non-productive example-use for proving. Journal of Mathematical Behavior, 53, 304-322. https://doi.org/10.1016/j.jmathb.2017.09.002

Buchbinder, O. y McCrone, S. (2020). Preservice teachers learning to teach proof through classroom implementation: Successes and challenges. Journal of Mathematical Behavior, 58. https://doi.org/10.1016/j.jmathb.2020.100779

Buchbinder, O. y Zaslavsky, O. (2019). Strengths and inconsistencies in students’ understanding of the roles of examples in proving. Journal of Mathematical Behaviour, 53, 129-147. https://doi.org/10.1016/j.jmathb.2018.06.010

Burgos, M., Tizón-Escamilla, N. y Godino, J. D. (2024). Expanded model for elementary algebraic reasoning levels. Eurasia Journal of Mathematics Science and Technology Education, 20(7). https://doi.org/10.29333/ejmste/14753

Cohen, L., Manion, L. y Morrison, K. (2018). Research methods in education. Routledge. https://doi.org/10.4324/9781315456539

Ellis, A., Lockwood, E. y Ozaltun-Celik, A. (2022). Empirical re-conceptualization: From empirical generalizations to insight and understanding. Journal of Mathematical Behavior, 65. https://doi.org/10.1016/j.jmathb.2021.100928

Font, V., Godino, J. D. y D’Amore, B. (2007). Enfoque ontosemiótico de las representaciones en educación matemática. For the learning of mathematics, 27(2).

Fredriksdotter, H., Norén N. y Bråting, N. (2022). Investigating grade-6 students’ justifications during mathematical problem solving in small group interaction. Journal of Mathematical Behavior, 67, 100972. https://doi.org/10.1016/j.jmathb.2022.100972

Gascón, J. (2020). How to argue with coherence. International Journal for Theory, History and Foundations of Science, 35(3), 327-344. https://doi.org/10.1387/theoria.20435

Godino, J. D. (2024). Enfoque ontosemiótico en educación matemática. Fundamentos, herramientas y aplicaciones. McGraw-Hill, Aula Magna.

Inglis, M., Mejía-Ramos, J. y Simpson, A. (2007). Modelling mathematical argumentation: The importance of qualification. Educational Studies in Mathematics, 66, 3-21. https://doi.org/10.1007/s10649-006-9059-8

Knipping, C. y Reid, D. (2019). Argumentation analysis for early career researchers. En G. Kaiser y N. Presmeg (Eds.), Compendium for early career researchers in mathematics education (pp. 3-31). Springer. https://doi.org/10.1007/978-3-030-15636-7_1

Larios-Osorio, V., Spíndola-Yáñez, P. I., Cuevas-Salazar, O. y Castro, J. (2021). Conflictos semióticos y niveles de algebrización en aspirantes a Ingeniería. Educación Matemática, 33(3), 263-289. https://doi.org/10.24844/em3303.10

Lew, K. y Zazkis, D. (2019). Undergraduate mathematics students’ at-home exploration of a prove-or-disprove task. Journal of Mathematical Behavior, 54. https://doi.org/10.1016/j.jmathb.2018.09.003

Mariotti, M. y Pedemonte, B. (2019). Intuition and proof in the solution of conjecturing problems. ZDM, 51(5), 759-777. https://doi.org/10.1007/s11858-019-01059-3

Marraud, H. (2014). Argumentos a fortiori. International Journal for Theory, History and Foundations of Science, 29(1). 99-112. https://doi.org/10.1387/theoria.6275

Milanesio, B. y Burgos, M. (2024). Significados personales sobre la demostración matemática de estudiantes al inicio de la educación superior. Educación Matemática, 36(3), 206-241. https://doi.org/10.24844/EM3603.08

Molina, O., Font, V. y Pino-Fan, L. (2019). Estructura y dinámica de argumentos analógicos, abductivos y deductivos: un curso de geometría del espacio como contexto de reflexión. Enseñanza de las Ciencias, 37(1), 93-116. https://doi.org/10.5565/rev/ensciencias.2484

Molina, O. y Pino-Fan, L. (2018). Diferencias entre discursos colectivos (verbales) e individuales (escritos) al hacer demostraciones en geometría: una explicación a partir del sistema de normas. Educación Matemática, 30(2), 73-105. https://doi.org/10.24844/EM3002.04

Molina, O. y Samper, C. (2019). Tipos de problemas que provocan la generación de argumentos inductivos, abductivos y deductivos. Bolema, 33, 109-134. https://doi.org/10.1590/1980-4415v33n63a06

Morales-Ramírez, G., Rubio-Goycochea, N. y Larios-Osorio, V. (2021). Tipificación de argumentos producidos por las prácticas matemáticas de alumnos del nivel medio en ambientes de geometría dinámica. Bolema, 35, 664-689. https://doi.org/10.1590/1980-4415v35n70a06

Papadaki, C., Reid, D. y Knipping, C. (2019). Abduction in argumentation: Two representations that reveal its different functions. En T. Jankvist, M. Panhuizen y M. Veldhuis (Eds.), Proceedings of the eleventh congress of the european society for research in mathematics education (pp. 310-317). Utrecht University and ERME.

Reuter, F. (2023). Explorative mathematical argumentation: A theoretical framework for identifying and analysing argumentation processes in early mathematics learning. Educational Studies in Mathematics, 112, 415-435. https://doi.org/10.1007/s10649-022-10199-5

Soler-Álvarez, M. y Manrique, V. (2014). El proceso de descubrimiento en la clase de matemáticas: los razonamientos abductivo, inductivo y deductivo. Enseñanza de las Ciencias, 32(2), 191-219. https://doi.org/10.5565/rev/ensciencias.1026

Staples, M. y Conner, A. (2022). Introduction: Conceptualizing argumentation, justification, and proof in mathematics education. En K. Bieda, A. Conner, K. Kosko y M. Staples (Eds.), Conceptions and consequences of mathematical argumentation, justification, and proof (pp. 1-10). Springer. https://doi.org/10.1007/978-3-030-80008-6

Stylianides, G. J., Stylianides, A. J. y Moutsios, A. (2023). Proof and proving in school and university mathematics education research: A systematic review. ZDM, 1-13. https://doi.org/10.1007/s11858-023-01518-y

Stylianides, G. J., Stylianides, A. J. y Weber, K. (2017). Research on the teaching and learning of proof: Taking stock and moving forward. En J. Cai (Ed.), Compendium for research in mathematics education (pp. 237-266). National Council of Teachers of Mathematics.

Toulmin, S. (2003). The Uses of Arguments. Cambridge University Press. https://doi.org/10.1017/CBO9780511840005

Varghese, T. (2017). Proof, proving and mathematics curriculum. Transformations, 3(1).

Vergel, R., Radford, L. y Rojas, P. J. (2022). Zona conceptual de formas de pensamiento aritmético “sofisticado” y proto-formas de pensamiento algebraico: Una contribución a la noción de zona de emergencia del pensamiento algebraico. Bolema, 36(74), 1174-1192. https://doi.org/10.1590/1980-4415v36n74a11

Weber, K., Lew, K. y Mejía Ramos, J. (2020). Using expectancy value theory to account for students' mathematical justifications. Cognition and Instruction, 38(1), 27-56. https://doi.org/10.1080/07370008.2019.1636796

Published

2025-04-25

How to Cite

Milanesio, B., & Burgos, M. (2025). Competencies and difficulties of undergraduate students facing a problem involving conjecture and proof. Contextos Educativos. Revista De Educación, (35), 59–85. https://doi.org/10.18172/con.6463